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Introduction

Different types of omics data are analyzed individually or integratively to understand 
the cancer biology and for better decision-making on cancer patients’ diagnosis and 
prognosis. The analyses include but are not limited to classification of tumor (sub)types, 
clustering of samples, predicting prognosis and drug response, and the understanding of 
the information flow between different data types. 

The omics data types and the relevant fields are listed in Table 1. A genome is the 
entire DNA of an organism. Genomics relates to all genes in contrast to genetics 
which considers only a limited number of genes. Transcriptomics relates to mRNAs, 
non-coding RNAs, and small RNAs. It is a snapshot of the samples or cell’s current 
situation. Although the active elements are proteins, transcriptomics data can be used 
as a proxy to protein expression. Proteomics is the omics approach that focuses on 
proteins’ structure, location, quantity, modifications, and functions in tissue and cell. 
The Human Protein Atlas (Fernandes, 2004), which started with the end of the Human-
Genome Project, and The Cancer Proteome Atlas of MD Anderson Cancer Center are 
the major data portals created for this concept (Li et al., 2017). RNA expression levels 
may not always correlate with protein expression levels, activity, and post-translational 
modifications for various reasons; therefore, it has an important place in the holistic 
approach. Lipidomics is an omics approach that aims to describe lipids and the functions 
of lipid-forming building blocks. Metabolomics shows the genomic and transcriptome 
makeup in practice. Phenomics emerges as a result of the system formed by all omics 
structures. The phenotype (external structure) describes the entirety of the observable 
characteristics of a living thing. It depends on the genes that govern enzyme and protein 
synthesis, namely its genotype (hereditary structure) and the effects of the environmental 
conditions in which it lives.
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Table 1. Omics Data Types and Relevant Fields in Systems Biology.
Omics Relevant field

Genomics DNA

Transcriptomics RNA

Proteomics Protein

Lipidomics Lipid

Metabolomics Metabolite

Phenomics Phenotype

In the rest of this chapter, we give a detailed description of the data resources and 
analyses in different types of transcriptomics data that is bulk (microarray and RNA 
sequencing) and single-cell RNA sequencing (scRNA-seq) data. We also mention drug 
and perturbation datasets. 

Microarray Data Analysis

The expression of thousands of genes can be measured by microarray technology at a 
time. Known gene sequences are placed on a glass slide (chip) and a sample is placed in 
contact with this glass slide, complementary base pairings produce light that identifies 
gene expression in the sample (Microarray Technology, n.d.). Microarray data analysis 
starts with the biological question or hypothesis and is followed by experimental 
design. The data is collected, RNA is extracted, fluorescent labeling is performed. 
The image is acquired after microarray hybridization. Following the image analysis, 
data preprocessing and normalization, further statistical/machine learning analysis is 
performed to investigate the biological question (Leung & Cavalieri, 2003). 

RNA sequencing (RNA-seq) Data Analysis

RNA sequencing is performed using next-generation sequencing and counts the 
discrete sequence reads (Hitzemann et al., 2013). The raw RNA-seq data is stored in 
FASTQ files and for each read the file has an ID, read sequence, and a quality score 
(Chu & Corey, 2012). The low-quality reads are filtered, and the rest of the reads are 
mapped to the reference genome (if the reference genome is available). After splice 
junction detection and gene/isoform expression quantification are done, further 
analysis can be performed to relate the transcriptomics data to relevant phenotype(s) 
and answer biological questions (Chen et al., 2011). RNA sequencing does 
not require a model organism unlike microarray platforms (Young et al., 2012).

Single Cell RNA Sequencing Data Analysis

scRNA-seq data enables researchers to understand the tumor heterogeneity and perform 
analyses at the cell level which provides higher resolution compared to bulk RNA 
sequencing (RNA seq) data analysis. In bulk RNA-seq data, each sample is an average 
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expression level of all cells in the sample and represented by an expression profile. In 
scRNA-seq data, each cell is represented by an expression profile and different cell types 
like immune and tumor cells can be analyzed individually or in their cluster. Clustering 
analysis can be performed on single-cell data to find different cell groupings and use the 
signature genes for each cluster to give a clue about the biological processes that are 
going on in the sample.

Publicly Available Data Resources

Gene-Expression Omnibus (GEO) (Edgar et al., 2002), was originally developed to host 
gene expression studies but now it also provides access to other types of high throughput 
data like protein expression, methylation, and copy number variation(CNV). Users can 
find the datasets by either entering GEO Accession ID or searching for keywords from 
the web interface. R Bioconductor GEOquery package (Davis & Meltzer, 2007) allows 
users to get data from GEO and parses it into R data structures. 

The Cancer Genome Atlas (TCGA)  (Tomczak et al., 2015)  is a publicly available multi-
omics data platform that consists of gene, exon, miRNA and protein expression, CNV, 
loss of heterozygosity (LOH) mutations, single nucleotide polymorphism (SNP), and 
DNA methylation data together with clinical features of over 20,000 samples from 33 
cancer types. TCGA provides researchers to do multi-omics data analysis to characterize 
cancer types and subtypes, and find biomarkers for diagnosis and prognosis of cancer 
patients (Hoadley et al., 2014), (Zhou et al., 2020), (Liu et al., 2018), (Berger et al., 
2018).  The TCGA data can be retrieved from the GDC portal.

The Expression Atlas is located under European Molecular Biology Laboratory-European 
Bioinformatics Institute (EMBL-EBI). It contains microarray, RNA-seq, proteomics 
data that meet various criteria.

In DDBJ (DNA Data Bank of Japan) center sequencing data is being collected in a 
joint consortium with GenBank at the NCBI and with the European Nucleotide Archive 
(ENA) at the EBI. Sequencing data is being collected in a joint consortium with GenBank 
at the NCBI and with the ENA at the EBI. The name of the common mechanism in 
this framework is International Nucleotide Sequence Database Collaboration (INSDC) 
(Fukuda et al., 2021).

Some example databases for publicly available transcriptomics data can be found in 
Table 2.
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Table 2. Publicly Available Bulk Transcriptomics Databases
Bulk Transcriptome Database description Link

ArrayExpress: Archive of Functional 
Genomics Data

www.ebi.ac.uk/arrayexpress

Biological database that collects DNA 
sequences

www.ddbj.nig.ac.jp

Gene expression pattern data www.ebi.ac.uk/gxa

Public functional genomics data repository www.ncbi.nlm.nih.gov/geo

Expression data of cancer metastasis hcmdb.i-sanger.com

TCGA - The Cancer Genome Atlas 
Program

portal.gdc.cancer.gov

Some of the R and Python libraries that can be used to retrieve data from Array Express, 
Expression Atlas, GDC Data portal - TCGA, and GEO are listed in Table 3. 

Table 3. R and Python Package for Accessing Genomic Data Portal
Data Portal

 Package  Package

ArrayExpress arrayexpress

ExpressionAtlas Geneexpatlas

TCGAbiolinks Pytcga

GEOquery GEOparse

Table 4 shows some of the databases that host single-cell RNA-sequencing data.

Table 4. Publicly Available Single-Cell Transcriptome Databases
Single-Cell 

Transcriptome
Database description Link

Public functional genomics data 
repository

www.ncbi.nlm.nih.gov/geo

scRNA sequencing experiments 
from mouse and human

panglaodb.se

Single-cell transcriptome for human 
diseases database

easybioai.com/sc2disease

Gene expression profiling scRNA-
seq

bioinfo.uth.edu/scrnaseqdb

Single-Cell Expression Atlas www.ebi.ac.uk/gxa/sc

Human transcriptome reference at 
single-cell resolution

tabula-sapiens-portal.ds.czbiohub.org
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Some of the R and Python environments that can be used to analyze scRNA-seq data are 
listed in Table 5. 

Table 5. Single-Cell Data Analysis Packages
Package Environment Link

www.bioconductor.org

satijalab.org/seurat

scanpy.readthedocs.io

theislab.github.io/scanpy-in-R

www.scrna-tools.org

The Drug Databases 

Different types of drug databases keep drug-related information like targeted pathways/
genes or drug screening results. We mention some of the most up-to-date drug and cancer 
dependency databases.

The Dependency Map (DEPMAP) portal consists of CRISPR (Ledford, 2015)  and RNA 
interference (RNAi) (Hannon, 2002) screens, Cancer Cell Line Encyclopedia (CCLE) 
(Ghandi et al., 2019) multi-omics data, and drug response screening datasets like 
profiling relative inhibition simultaneously in mixtures (PRISM) (Corsello et al., 2020), 
Cancer Therapeutics Response Portal (CTRP) (Rees et al., 2016) and the Genomics of 
Drug Sensitivity in Cancer (GDSC) (Yang et al., 2013) to detect cancer vulnerabilities. 
Using these datasets, researchers can relate mutation and/or gene expression to drug or 
gene intervention response, detect genes that are commonly essential for cell lines or 
specifically essential to a particular subset of cell lines (Copeland, 2012), (Shimada et 
al., 2021).

Connectivity Map (CMAP) (Lamb et al., 2006) (Subramanian et al., 2017) and the 
Library of Integrated Network-based Cellular Signatures (LINCs) (Keenan et al., 2018), 
provide gene expression after a chemical compound perturbation. These resources have 
been used for prioritizing drug candidates and detecting the drugs that can be repurposed 
(Dudley et al., 2011), (Gottlieb et al., 2011). 

A list of drug databases can be found in Table 6. 
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Table 6. Drug-Related Resources
Drug Portals Database Description Link

Drug Set Enrichment Analysis dsea.tigem.it

Pathway-based Rational Drug 
Repositioning

gene2drug.tigem.it

Database for Drug and Drug 
Target Info

go.drugbank.com

The drug-gene interaction 
database

www.dgidb.org

Bioactive molecules with drug-
like properties database

www.ebi.ac.uk/chembl

Collection of chemical 
information

pubchem.ncbi.nlm.nih.gov

Pharmacogenomics knowledge 
resource

www.pharmgkb.org

Interaction networks of chemicals 
and proteins

stitch.embl.de

LINCS L1000 Gene expression profiles for small 
molecules and drugs

lincsproject.org/LINCS

Analyses Performed in Cancer Research

Gene IDs/Symbol Conversion

Gene ids (EntrezID, gene name, EnsembleID, etc.) obtained as a result of the analyzes 
may differ. Different gene enrichment tools may require different gene name inputs. 
That’s why there are some packages and online tools for different notations. Tools such as 
DAVID and UCSC Gene ID Converter can be used online and bioMart, AnnotationDBi, 
and ClusterProfiler packages as R packages (Roy, 2020). Table 7 shows examples of 
Gene ID mapping tools.

Table 7. Some Examples of Gene ID Mapping Tools.
Gene ID mapping tools Link

HGNC www.genenames.org

AnnotationDbi www.bioconductor.org/packages/release/bioc/html/AnnotationDbi.
html

 
bioconductor.org/packages/release/bioc/html/biomaRt.html

org.Hs.eg.db bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.
db.html

 
guangchuangyu.github.io/software/clusterProfiler



Current Studies in Basic Sciences, Engineering and Technology 2021

76

www.syngoportal.org/convert.html

david.ncifcrf.gov/conversion.jsp

https://biit.cs.ut.ee/gprofiler/convert

UCSC Gene ID Converter www.biotools.fr/human/ucsc_id_converter

Feature Selection/Reduction and Visualization 

In transcriptomics data analysis, the number of genes (features) is very high (in thousands) 
compared to the number of samples causing the curse of dimensionality. There are 
also housekeeping genes that are almost equally expressed in every cell obscuring the 
difference among samples/cells. 

Feature selection means picking a subset of informative genes for further analysis, and 
it is performed using statistical tests like t-test between two groups (for exp., cancer vs 
normal). Feature reduction is performed to map the features into a lower-dimensional 
space that can capture the variance in the dataset like Principal Component Analysis 
(PCA) or Multidimensional Scaling (MDS). After picking or forming 2 or 3 dimensions 
(features), we can visualize the data in a lower space.

Classification Analysis 

Classification analysis can be performed to predict healthy versus cancer tissues and 
different subtypes of cancer. Different subtypes are treated differently, and the prognosis 
may also be different, so it is important to know/predict which subtype the sample/patient 
belongs to. The classification analysis algorithms like decision trees, logistic regression, 
k-nearest neighbor algorithm (KNN), support vector machines (SVM), random forest, 
and artificial neural networks can be used in transcriptomics data classification. Many 
classification algorithms internally have feature selection mechanisms that can detect 
discriminative genes between subclasses or the labels of interest. 

Clustering Analysis

 Clustering analysis shows which samples are similar in terms of their expression profile 
and which genes are grouped in terms of their expression pattern over samples. Different 
genes can be grouped and enriched with a biologically meaningful unit like a pathway or 
biological process term. Similarly, similar samples are clustered together according to the 
gene expression profiles implying that they have shared biological events and may show 
similar prognosis or drug response. The clustering algorithms like hierarchical clustering, 
k-means, self-organizing maps (SOM) can be used for clustering transcriptomics data. 
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Regression Analysis 

In cancer research, regression analysis is performed to predict the numerical value of a 
relevant phenotype like drug response. Some of the regression analysis algorithms are 
linear regression, support vector regression (SVR), and random forest regression.

Differential Expression Analysis

Given two groups of samples (before and after drug treatment, healthy vs. cancer), 
differential expression analysis can be performed to get the differentially expressed genes 
between two conditions. T-test and Wilcoxon test are commonly used for microarray 
data. There are some frequently used methods baySeq, DESeq2, EBSeq, edgeR, limma-
voom, NOISeq, sleuth, and TCC-GUI for RNA-seq data analysis.

After getting the differentially expressed, either each gene is searched individually, or 
gene set enrichment is performed to get biological differences between the two groups.

Gene Set Enrichment Analysis

Gene Set Variation Analysis-GSVA (Hänzelmann et al., 2013) and single-sample Gene 
Set Enrichment Analysis-ssGSEA (Sweet-Cordero et al., 2005)  are methods which 
are used for gene set enrichment analysis within the gene expression data (without a 
comparison group) and map the gene expression profile into a functional annotation 
profile. 

Gene Ontology (GO) (Harris et al., 2004) is a large human and machine-readable 
knowledge base, defined from different perspectives regarding the functions of genes. 
Gene ontology has been defined to cover three areas: biological processes (GO-BP), 
molecular function (GO-MF), and cellular components (GO-CC) (Ashburner et al., 
2000; Gene Ontology Consortium, 2021).

Panther database, which is a part of the gene ontology database, is a biological database 
created to describe the functions of gene-protein families (Thomas et al., 2003).

Kyoto Encyclopedia of Genes and Genomes (KEGG) database maps genes, chemicals, 
and drugs to functional elements (pathways). The database is kept-up-to date and is a 
free online resource accessible to all researchers. It contains submodules such as genes, 
pathways, ligands, and drugs (Kanehisa & Goto, 2000).

Gene set enrichment tools are listed in Table 8. 
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Table 8. Functional Gene Set Enrichment Analysis Tools
Enrichment Tools Description Link

Database for Annotation 
Visualization & Integrated 

Discovery

 
david.ncifcrf.gov

A suite of gene list 
enrichment analysis tools

maayanlab.cloud/Enrichr

Kyoto Encyclopedia of 
Genes and Genomes

 
www.genome.jp/kegg

Online maps of metabolic 
and signaling pathways

 
www.biocarta.com

An ontology-based 
pathway database coupled 

with data analysis tools

 
www.pantherdb.org/pathway

Gene Set Enrichment 
Analysis

 
www.gsea-msigdb.org/gsea/index.jsp

The Gene Ontology 
Resource

www.geneontology.org

An annotation and analysis 
resource

metascape.org/gp

ConsensusPathDB-human cpdb.molgen.mpg.de

Gene Set Clustering based 
on Functional annotation

 
github.com/genescf

The Molecular Signatures 
Database MSigDB

www.gsea-msigdb.org/gsea/msigdb

Network of Cancer Genes 
& Healthy Drivers

ncg.kcl.ac.uk

Web server for functional 
enrichment analysis

biit.cs.ut.ee/gprofiler/gost 

Portal for gene list 
enrichment analysis

toppgene.cchmc.org

GO enRIchment anaLysis 
and visuaLizAtion tool

 
cbl-gorilla.cs.technion.ac.il

GO Enrichment Analysis bioinformatics.sdstate.edu/go

 Integrated Differential 
Expression and Pathway 

analysis

 
bioinformatics.sdstate.edu/idep

Intelligent prioritization 
and exploratory 

visualization of biological 
functions for GSEA

 
kobas.cbi.pku.edu.cn

Web Gene Ontology 
Annotation Plot

wego.genomics.cn
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The functional Enrichment 
analysis tool

www.funrich.org

Network augmented Gene 
Set Enrichment Analysis

 
www.inetbio.org/ngsea

Collections of genes and 
variants associated with 

human diseases

www.disgenet.org

Database of biological 
pathways

 
www.wikipathways.org/index.php/WikiPathways

Enrichment Analysis 
Utilizing Active 

Subnetworks

github.com/egeulgen/pathfindR

Visualization of Functional 
Enrichment Result

github.com/YuLab-SMU/enrichplot

Protein-Protein Interaction 
Networks

string-db.org

Network Data Integration 
Analysis and Visualization

cytoscape.org

Visual web editor for 
cancer pathways and 

genomic data

 
www.pathwaymapper.org

Collect and disseminate 
biological pathway and 

interaction data

 
www.pathwaycommons.org

Visualization and analysis 
of cancer genomics data 

sets

 
www.cbioportal.org

Gene Expression Profiling 
Interactive Analysis

 
gepia.cancer-pku.cn

Network-Based Gene 
Enrichment Analysis

 
net-ge2.biocomp.unibo.it

Gonet tool for interactive 
GO analysis

 
tools.dice-database.org/GOnet/

An integrated data-
mining platform for 

comprehensive analysis of 
cancer transcriptome

 
ualcan.path.uab.edu/home

Drug Response Data Analysis

To find the best treatment for an individual patient, the drug response can be predicted 
given patient gene expression data or other genetic attributes. The computational drug 
response analysis was performed for predicting the Area Under Curve (AUC), half-
maximal inhibitory concentration (IC50), and half-maximal effective concentration 
(EC50) for cell line or patient sample to each drug and to relate the best possible drug 
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treatment to genetic characteristics like gene expression profiles and mutation status.

Chapter Summary

This chapter aims to provide introductory material to the researchers who are new 
to bioinformatics and computational cancer research domain and aim to work on 
transcriptomics data, particularly. We provide basic information about different types of 
omics data and more detailed explanations on transcriptomics data for cancer research. 
We mention the publicly available datasets and tools. We explain different analyses 
performed to analyze bulk and single-cell RNA sequencing transcriptomics data. We 
also touch upon the functional annotation tools and drug response databases that relate 
the analyses results to phenotypes. 
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