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What is an FPGA?

FPGA is a term formed by combining the first letters of the word Field-Programmable 
Gate Array. The reason for using the term “field programming” is that the function of 
the FPGA integrated circuit (IC) is not programmed at factory output and is an IC that 
can be changed while in the field. The function mentioned here is a task created with 
the hardware architecture of IC. It has grown very rapidly since the FPGA term was 
introduced. While growing at a high rate in terms of capacity and performance, the 
decrease in cost per unit operation has made FPGAs remarkable (Unlersen, 2015). In 
Figure 1, an FPGA IC is presented.

Figure 1. An FPGA IC belongs Xilinx Company

Although Xilinx presented the first hardware that can be called FPGA in 1984, the term 
FPGA became popular in 1988 with the company Actel. The non-recurring engineering 
cost required for application-specific integrated circuit (ASIC) fabrication does not 
exist in FPGAs. But, this situation made FPGAs advantageous only in the use of a low 
number of units. In this process, ASICs were more popular because they were very low 
cost compared to FPGAs in high production. However, according to Moore’s law, the 
prediction that the number of units that FPGA will be advantageous will increase in the 
future has prevented the interest in FPGAs from decreasing. Today, performance, I/O 
capacity, power consumption, time to market and other capabilities are more important 
than device cost in FPGA-ASIC comparison (FPGA Designs with VHDL Documentation, 
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n.d.; Trimberger, 2015; What Is an FPGA? Field Programmable Gate Array, n.d.).

Some of the application areas of FPGAs can be listed as follows (Rajewski, 2017):

• Aerospace

• Defense

• Automotive

• High Performance Computing and Data Storage

• Data Center

• Industrial

• ASIC Prototyping

• Broadcast

• Video and Image Processing

• Wired and Wireless Communications

• Medical Imaging

• Security

In the design of an embedded system, the question of which platform should be designed 
first comes to mind. Because for the designer, there are many different hardware such 
as microcontrollers, ASIC, microcomputer, FPGA. Actually, FPGA is not a one-to-
one alternative to other microprocessor-built platforms. On an FPGA, a hardware to 
perform the required operation can be designed. However, in systems created with a 
microprocessor, commands that will perform a desired operation are executed on a fixed 
hardware. Additionally, it is also possible to design a microprocessor with an FPGA.

The designer’s choice of FPGA among these alternatives depends on the needs of the 
system to be designed rather than a matter of whim. For example, in a hardware where 
the algorithm to be used will change frequently and operations such as multiplication 
and division with complex numbers will be made frequently, using a DSP produced for 
this purpose may be more logical than using an FPGA. Because it will be very simple 
and flexible to make calculations on this DSP using a high-level language such as C. In a 
platform that should be cheap rather than high performance, choosing a microcontroller 
can be a fast, simple and satisfying solution. However, if the process requires high 
performance and speed, then FPGA will be more suitable for this type of applications 
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(Leong et al., 1998; Rajewski, 2017). 

FPGA Structure

FPGAs are semi-ready silicon devices that can be electrically programmed to be part of 
a digital circuit or system. Its structure can be defined in three main parts: programmable 
logic blocks, input and output blocks surrounding this block array, and interconnections 
(Chu, 2008; Gunes & Ors, n.d.).

The basic FPGA structure consists of thousands of basic elements called Configurable 
Logic Blocks (CLB). These basic structures can be called Logic Blocks (LB), Logic 
Elements (LE) or Logic Cells (LC) according to the manufacturer (Gunes & Ors, n.d.). 
CLBs are formed by combining a set of logic elements such as a LookUp Table (LUT) 
and flip flops (FF). The hardware architecture of the FPGA consists of the data stored in 
these LUTs. The working principle of a 4-input LUT is illustrated in Figure 2.

Figure 2. A 4-Input LUT Structure

The values specified here, as Data are the data loaded during FPGA programming. 
According to this loaded data, the value applied to the inputs is selected and transferred 
to the output. Thus, this LUT fulfills its special mission.

Although the LUT and the used logic elements that make up the CLB differ from 
company to company, an example CLB structure is presented in Figure 3.
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Figure 3. An example CLB Structure

In the CLB shown, a LUT output is selected with a multiplexer according to synchronous 
or asynchronous structure, while a D-type FF is activated in synchronous use.

The term programmability in FPGAs means that LUT information and other logic elements 
can be controlled according to the designed system after production. The programming 
mentioned here is not the commands operated by a hardware as in microcontrollers, but 
the codes that define the hardware.

There are interconnections around CLBs. Interconnects allow these blocks to be 
programmed and communicated with other blocks (Chu, 2008).

The communication of FPGAs with the outside world is provided by the input and output 
(I/O) blocks. These blocks can be configured in different directions as input or output. 
Today, the I/O blocks of FPGAs support 500MHz operating frequency. Also, some of 
the I/O blocks have the ability to read data on both falling and rising edges (What Is an 
FPGA? Field Programmable Gate Array, n.d.; What Is an FPGA? Programming and 
FPGA Basics - INTEL, n.d.).

Pins on FPGA IC are divided into 2 categories (Chu, 2008; Gunes & Ors, n.d.; Rajewski, 
2017). 

• Dedicated pins: Pins with special tasks on the FPGA are called dedicated pins. 
They are divided into three groups according to their functions.

• Power pins: They provide the power needed for the IC to work.

• Configuration pins: They are used to download the program created in the 
PC software to the IC.

• Clock pins: These are the pins specially set to receive the simultaneous 
clock signals in IC.

• User pins: These are the standard pins that can be set as Input, Output or Input-
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Output. Each pin has its own I/O cell. This cell determines in which mode a pin 
will work.

Synchronous design is an important area in logic circuit designs. Such designs are clock-
based. This is also true for FPGA. However, the most important issue in synchronous 
design is that the clock signal reaches all logic elements simultaneously. Otherwise, 
timing problems and even electrical problems will arise. FPGA manufacturers have 
overcome such problems with a connection structure called Global Routing or Global 
Line for clock signals. Thanks to these connections, the clock signal reaches all CLBs 
simultaneously. For this reason, clock feeds must be made from the pins of the FPGA 
that are reserved as clock (Chu, 2008; Gunes & Ors, n.d.; Rajewski, 2017; Unlersen et 
al., 2018).

There are PLL blocks that can generate the high frequencies which are needed internally 
within the FPGA. These blocks can generate the necessary operating frequencies up to 
500MHz, taking the frequencies from the clock input of the FPGA as reference, usually 
around 50MHz (Unlersen, 2015).

FPGAs contain RAM units in blocks. These memories are used for data storage processes 
that CLBs will need during their operations. These RAMs support both single access 
and multiple access. Multiple applications accessing the same RAM at the same time is 
called multiple access. While these block RAMs meet the large memory needs of CLBs, 
there are distributed RAMs interspersed around the CBLs for small memory needs (Chu, 
2008; Gunes & Ors, n.d.; Rajewski, 2017).

Programming FPGAs

VHDL and Verilog are used in FPGA programming. The prepared program is loaded 
onto the FPGA IC with the Joint Test Action Group (JTAG) protocol. JTAG is an IEEE 
Standard 1149.1-1990 that was created in the 1980s to eliminate errors in the production 
of electronic cards (IEEE Standards Board. & IEEE Computer Society. Test Technology 
Technical Committee., 1993). Most FPGAs do not have an internal EEPROM. The 
loaded program is stored in SDRAM cells. In other words, the program loaded with 
JTAG is not permanent. Therefore, the program must be reloaded each time the FPGA 
is re-energized. For this reason, they are designed with an external EEPROM right next 
to the point where the FPGA ICs are located (What Is an FPGA? Field Programmable 
Gate Array, n.d.; What Is an FPGA? Programming and FPGA Basics - INTEL, n.d.).

VHDL - Very High-Speed Integrated Circuit Hardware Description Language

Hardware description languages are used in FPGA programming. These are VHDL 
and Verilog. Verilog uses a textual format to describe electronic systems. In the field of 
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electronic design, Verilog can be used for verification through simulation for testability 
analysis, error grading, logic synthesis and timing analysis. Verilog has the IEEE 1364 
standard. Design is performed with fewer commands. In terms of structure, it is a 
language that is often compared to C. However, Verilog is not as wordy as VHDL due to 
its nature. Therefore, VHDL is more capable of creating hierarchical structures (Gunes 
& Ors, n.d.; Nageswaran, 1997).

Details of VHDL will be given here. VHDL is a widely used hardware description 
language for designing and testing digital circuits. VHDL stands for Very high speed 
integrated circuit Hardware Description Language (Unlersen, 2015). 

The most important feature of VHDL is that designs can be divided into components in a 
hierarchical way. Each design element should have a well-defined interface. There must be 
faultless behavior design in architecture. VHDL supports synchronous and asynchronous 
circuit design. The time behavior of functions can be observed by simulation. It thus 
allows the behavior of the underlying system to be verified and modeled before the 
design is translated into actual gates and cables (“IEEE Standard for VHDL Language 
Reference Manual,” 2019; VHDL Tutorial: Learn by Example, n.d.; Nageswaran, 1997). 
In addition, programs prepared in VHDL are portable structures. A component prepared 
for a previous project can be integrated into subsequent projects (Baker, n.d.; Pak, n.d.).

There are many advantages of using VHDL  (VHDL Mini-Reference, n.d.).

• Has independent design definitions

• Applicable to many manufacturer ICs

• The design can be updated when necessary

• Allows a standard documentation

• It shortens the design process

• Accelerates the commercialization of design

• Reduces research and development costs

• Increases final product quality

• Enables detailed control of its functions

• Re-use of previous designs as components
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A program prepared with VHDL consists of three basic parts;

1. Entity

2. Architecture

3. Procedure

The input and output pins of the entity to be designed are defined in the Entity section. 
An example for “OR GATE” of Entity is given below.

entity OR_GATE is               -- Comment line 
 generic( 
            data_width: integer :=4;  
            delay_time: time := 10ns 
        ); 
 port   ( 
            D : in std_logic_vector( data_width-1 downto 0); 
            Q : out std_logic 
        ); 
 signal ln01 : std_logic; 
end OR_GATE; 

where OR_GATE is the project name. The name of the vhd file with all the codes must 
be the same as the project name. Expressions defined in the generic field are used to 
define presets that can be set without changing the code structure. Here, the width of 
inputs the OR gate will have is defined as generic. Here, two expressions are defined 
inside the generic( … ) expression. There should be no markup at the end of the last 
statement. Generic values can be updated as needed during synthesis and simulation. 
But the hardware is not hot-swappable (Gunes & Ors, n.d.; “IEEE Standard for VHDL 
Language Reference Manual,” 2019; Nageswaran, 1997).

In the Port section, there are pin definitions that the designed hardware will use when 
communicating with the outside world. Here, there is a lot of information such as 
port names, port direction, data width, data type. All items must be separated with a 
semicolon. There is no sign at the end of the last item (Baker, n.d.; VHDL Tutorial: 
Learn by Example, n.d.).

In this section, after the port definition, signal definition can be made if needed. Detailed 
information about this will be given in the definitions section.

The “- -” (double dash) symbol in the first line is used to add a comment line. This sign 
is like // in C language, % in Matlab, or # in Python. Expressions after the double dash 
are ignored by the compiler.

It is the unit in which the type and direction of the input and output pins of the Entity 
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design are defined in detail. However, it does not contain any information about the 
functions of the design. Input-output definitions and directions (in, out, inout, buffer) 
are made in this section (Baker, n.d.; “IEEE Standard for VHDL Language Reference 
Manual,” 2019). 

The descriptions of pin directions used here are as follows (Pak, n.d.);

• In: It is a read-only structure used for input pins.

• Out: It is the structure used for the output pins and can only be given a value but 
cannot be read.

• Buffer: It is the only driver accepting structure that can be read and written for 
bidirectional pins.

• Inout: It is a pin structure that can have more than one driver and can both read 
and write values.

A procedure is a construct used within the designed entity to avoid duplicating an 
operation that is often repeated. It is not an indispensable structure. A procedure that 
increments the value in a variable by one is presented below.

procedure one_incrementer (variable vr: inout int8) is 
begin 
    if (vr <= MAKSIMUM) then  
        vr := vr + 1; 
    end if; 
end 

Architecture is the area where the structure of the designed asset is determined. The 
architecture required for the OR_GATE design defined in the Entity section is shown 
below.

architecture behaviour of OR_GATE is 
begin 
 
    Q <= D(0) or D(1) or D(2) or D(3); 
 
end behaviour; 

The term “behaviour” as used here is an arbitrary term for the programmer. However, 
special terms of the programming language cannot be used here.

The function of the designed system is defined in Architecture. This design can be done 
in three different ways (Gunes & Ors, n.d.; Pak, n.d.). They are:
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• Behavioral 

• Data Flow 

• Structural

Let’s examine these identification forms with a full adder design.

First, the entity required for the 1-bit full adder design must be defined. The entity 
required for this structure is given below.

entity FULL_ADDER is  
port   ( 
        A : in std_logic; 
        B : in std_logic; 
        Carry_in : in std_logic; 
        Q : out std_logic; 
        Carry_out : out std_logic 
        ); 
end FULL_ADDER; 

Behavioral Style

Here, A, and B are the two numbers to add, while Carry_in is the carry input. The truth 
table for this full adder will be as in Table 1.

Table 1. Truth Table for Full Adder

A B Carry_in Carry_out Q

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

In line with this table, a code can be created for the behavioral style as follows. 
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architecture Behaviour of FULL_ADDER is 
begin 
    process (A, B, Carry_in) 
    begin 

   if (A='0' and B='0' and Carry_in='1') or 
                (A='0' and B='1' and Carry_in='0') or 
                (A='1' and B='0' and Carry_in='0') then 
            Q <= '1'; 
            Carry_out <= '0';         
 
        elsif (A='0' and B='0' and Carry_in='0') then 
            Q <= '0'; 
            Carry_out <= '0'; 
 
        elsif (A='0' and B='1' and Carry_in='1') or 
                (A='1' and B='0' and Carry_in='1') or 
                (A='1' and B='1' and Carry_in='0') then 
            Q <= '0'; 
            Carry_out <= '1'; 
        else 
            Q <= '1'; 
            Carry_out <= '1'; 
        end if; 
    end process; 
end Behaviour; 

The process structure and if, elsif, else structure used here will be mentioned in the 
following stages. Behavioral style is designed using processes. In this style, typing is 
performed in a program-like manner. However, it is not clear what kind of formulation the 
operations to be performed have. It’s just like constructing a truth table with conditions 
(Gunes & Ors, n.d.; Pak, n.d.). 

Data Flow Style

In the data flow style, the operations are presented more clearly. Results are obtained 
by arithmetic and/or logic operations with control signals and data. In order for the full 
adder to be designed in a data flow architecture, logic operations should be introduced 
by passing from the truth table to the Karnaugh diagram. Karnaugh diagrams and logic 
formula of the truth table given above are given in Table 2.

Table 2. Karnaugh Diagrams for Q and Carry out in Full Adder Design

Q  B C   Carry_out  B C
  00 01 11 10     00 01 11 10

A
0 0 1 0 1   

A
0 0 0 1 0

1 1 0 1 0   1 0 1 1 1
 Q = (A xor B) xor C Carry_out = (A and B) or (A and C) or (B and C)
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The codes in the data flow style created according to the obtained formulas of the full 
adder circuit are presented below.

architecture BEH of FULL_ADDER is 
    signal L : std_logic; 
begin 
  Carry_out<=(A and B) or (A and Carry_in) or (B and Carry_in); 
  L <= A xor B; 
  Q <= L xor Carry_in; 
end BEH; 

Structural Style

It is formed as a result of the organization of sub-modules working simultaneously in a 
structural style. For the full adder, this can be achieved by combining the half adders. 
For this reason, a half adder structure is needed first for this example. First, let’s examine 
the  half adder structure.

entity HALF_ADDER is               
port   ( 
        A : in std_logic; 
        B : in std_logic; 
        Carry_out : out std_logic; 
        Q : out std_logic 
        ); 
end HALF_ADDER; 
 
architecture DATAFLOW of HALF_ADDER is 
begin 
    Q <= A xor B; 
    Carry_out <= A and B; 
end; 

As can be seen, A and B are defined as input, Carry_out and Q are defined as output. 
These values are simply obtained with an EXCLUSIVE-OR and an AND operation.

Figure 4. Full Adder Construction with Half Adders

Using half adders, it is possible to obtain a full adder with the scheme given in Figure 
4. Defining this schema in architecture is what we call structural style. The architecture 
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created with the definition of this schema is shown below.

architecture STRUCTURE of FULL_ADDER is 
 
    component HALF_ADDER 
        port ( 
            In1, In2 : in std_logic; 
            Out1, Out2 : out std_logic 
        ); 
    end component; 
 
    signal line1, line2, line3 : std_logic; 
begin 
 
    HA1 : HALF_ADDER port map (A, B , line1, line2); 
    HA2 : HALF_ADDER port map (line2, Carry_in, line3, Q); 
    Carry_out <= line1 or line3; 
 
end STRUCTURE; 

Components are one of the most important elements of VHDL. Thanks to its component 
definition feature, VHDL offers the opportunity to include previous studies into new 
studies. A defined component can be used repeatedly within the architecture. The line1, 
line2, line3 specified here is a signal object. It can also be understood from the code that 
these provide the electrical connection between two points (Gunes & Ors, n.d.; Pak, 
n.d.).

Data Objects

The data objects used in VHDL are:

• Signal

• Constant

• Variable

Signals, the most important data object, provide connections within the design. Constant 
and Variable are less frequently used data objects.

There are a number of standard details to consider when specifying names for data 
objects. 

• When creating names for data objects, characters, numbers, and the underscore 
are permitted for use.

• Characters not used in English cannot be used.
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• Keywords used in VHDL cannot be specified as data object name.

• The first character of the data object must be a letter.

• The last character of the data object cannot be an underscore.

Assigning a Value to a Data Object 

While assigning a single-bit value to the signal data object, it is written as 1 or 0 in single 
quotes. But for assigning a multiple bit value, it is written as a sequence of 1 and 0 in 
double quotes. For example, if beep is a 1 bit signal and dt is a 4 bit signal:

beep <= '0'; 
dt <= "1011"; 

The signal object is defined as shown below.

SIGNAL data_obj_name : type [:= default_value]; 
 
signal line1, line2, line3 : std_logic; 
Signal Beep : Bit := '0'; 
Signal data : integer; 

In this definition, it is not obligatory to include the expression given in square brackets. 
Sample signal definitions are given above.

Constants are expressions that are initially assigned a value and cannot be changed 
afterwards. The definition and examples are given below.

CONSTANT data_obj_name : type := value; 
 
Constant Yes : Boolean := true; 
Constant No : Boolean := false; 

Variable stores temporary information. They are expressed in the process and subprogram, 
and the information they store is accessible within the respective process. The definition 
of a variable is given below. It is not mandatory to use the part in square brackets.

VARIABLE data_obj_name : type [:= default_value]; 
 
VARIABLE X,Y : std_logic_vector(7 downto 0); 
variable a : integer := 0; 

Data Types

Data objects are always defined using a data type. The data types that can be synthesized 
are as follows.
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• BIT

• BIT_VECTOR

• STD_LOGIC

• STD_LOGIC_VECTOR

• SIGNED

• UNSIGNED

• INTEGER

• ENUMERATION

• BOOLEAN

BIT and BIT_VECTOR

BIT defines a single bit object. This object can take a value of ‘0’ or ‘1’. BIT_VECTOR 
is used to define the BIT type object with the specified width.

SIGNAL x1 : BIT; 
SIGNAL C : BIT_VECTOR (1 to 4); 
SIGNAL VR1 : BIT_VECTOR (7 downto 0); 
SIGNAL VR2 : BIT_VECTOR (0 to 7); 

As defined above, x1 is a single-bit object while C is a 4-bit object. VR1 and VR2 
are both 8-bit objects. The difference between these two is in the order of the bits. In 
VR1, the most significant bit is in the 7 indexed bit and the least significant bit is in the 
0 indexed bit. In VR2, on the other hand, the most significant bit is in the 0 indexed 
bit, while the least significant bit is in the 7 indexed bit. This can be seen in the data 
assignment and results below.

VR1 <= "10110110"; 
    -- VR1(0) -> 0 
    -- VR1(1) -> 1 
    -- VR1(2) -> 1 
    -- VR1(3) -> 0 
    -- VR1(4) -> 1 
    -- VR1(5) -> 1 
    -- VR1(6) -> 0 
    -- VR1(7) -> 1 

VR2 <= "10110110"; 
    -- VR2(0) -> 1 
    -- VR2(1) -> 0 
    -- VR2(2) -> 1 
    -- VR2(3) -> 1 
    -- VR2(4) -> 0 
    -- VR2(5) -> 1 
    -- VR2(6) -> 1 
    -- VR2(7) -> 0 
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STD_LOGIC and STD_LOGIC_VECTOR

STD_LOGIC type, which has a more flexible structure than BIT type, can take Z, 0, 
1, L, H, U, -, X and W values. The explanations of these values are shown in Table 3 
(“IEEE Standard for VHDL Language Reference Manual,” 2019; VHDL Tutorial: Learn 
by Example, n.d.; Nageswaran, 1997). Objects with this data type can perform AND, 
NAND, OR, NOR, XOR, XNOR, NOT logic operations. As with the BIT structure, 
adding _VECTOR defines the width of the object. To use it, it is necessary to install the 
std_logic_1164 package in the ieee library.

Table 3. Possible Values of STD_LOGIC type

Value Explanation
0 Logic 0
1 Logic 1
Z High Impedance
W Weak signal (unable to say 0 or 1)
L Weak 0
H Weak 1
- Don’t Care
U Uninitialized
X Unknown

VARIABLE x : std_logic_vector (7 downto 0); 
 
VARIABLE btn: std_logic; 

Here, the variable x is 8 bits wide, while the btn variable is 1 bit wide.

Signed - Unsigned

It is a data type used for signed and unsigned data. In addition to the ability to access 
the value of each bit separately, such as std_logic_vector, it also supports a number of 
operations such as arithmetic (+, - *), comparison and shifting. To use it, the std_logic_
arith package from the ieee library must be installed.

Objects of UNSIGNED data type always store positive values. The value is defined by 
all bits. For example, an 8-bit data object stores values between 0 and 255.

Objects of SIGNED data type can have positive or negative values. The sign of the 
data object is determined by the most significant bit. If the most significant bit is 0, it 
is positive. Contrarily, if the most significant bit is 1, it is negative. The absolute value 
(magnitude) of a negative value is found by inverting the remaining bits and adding 1. 
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SIGNAL in1: unsigned (3 downto 0); 
SIGNAL in2: signed (7 downto 0); 

Integer

Generally, it can take values in the range of -231 to 231 -1. Depending on the user, this 
range of values can be changed. If a value outside the definition range is given, an 
error will occur. It can store negative values. In addition to standard operations such as 
addition, subtraction, multiplication, division, and modulus, they can also be used in 
comparison operations such as greater than, greater than or equal, less than, less than or 
equal, equal, and unequal.

VARIABLE a : integer; 
VARIABLE b : integer range -100 to 200; 

The variable a, defined here is defined to be used in the natural range of the integer. B, on 
the other hand, is set to store values in the range of minimum -100 and maximum 200.

Boolean

This data type has two values as TRUE and FALSE.

Constant Yes : Boolean := true; 
Constant No : Boolean := false; 

Enumeration

It is a data type whose values can be defined by the programmer. In order to use this data 
type, the data type must be defined first. All values to be used in this type must be given 
during type definition. For example, let’s define a color variable.

TYPE color is (red, orange, yellow, blue, black, white); 
SIGNAL pxl : color; 

Here, the pxl variable cannot take a value other than the defined colors. While the pxl <= 

blue; operation is a valid assignment, the pxl <= green; operation is an invalid assignment. 
Because the color green is not included in the type definition.

Operators

The operators used in VHDL are grouped and presented in Table 4.
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Table 4. Operators Used in VHDL

Symbol of Operator

Miscellaneous

MOD Modulus

ABS  Absolute value

**  Power

Multiplication, Division
*  Multiplication

/  Division

Addition, Subtraction
+  Addition

-  Subtraction

Sign
+  Positive

-  Negative

Logic

NOT  Not

AND  And

NAND  Not and

OR  Or

NOR  Not or

XOR  Exclusive or

XNOR  Not exclusive or

Sequential Operations

The simultaneous assignment statements in the architectural design have no priority or 
order. Changing their order does not affect the function of the final structure. However, 
VHDL also provides another type of statement, called sequential statements. These are 
statements such as if statement, case statement, loop statements. The order of these will 
affect its function. So the order is important. Separation of concurrent statements that do 
not change the result of their sequencing and sequential statements whose ordering is 
important is provided by the PROCESS structure (Gunes & Ors, n.d.; “IEEE Standard 
for VHDL Language Reference Manual,” 2019; VHDL Mini-Reference, n.d.).

The PROCESS statement is included in the architecture. The variable type is defined in 
PROCESS as shown. Data in a variable defined in a PROCESS can only be exported by 
transferring it to another signal type object.
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[Name :] PROCESS (Sensitivity List) 
 VARIABLE var_name : var_type [range . to .][:=default_value]; 
begin 
                -- codes 
    ....        -- codes 
end process [Name];  

The expressions in square brackets specified here are not mandatory. The expression 
indicated by Name is used to define PROCESS. It is not a mandatory statement, but 
naming is necessary to create a regular code. The sensitivity list is important. Here, 
the signals to be used in PROCESS are listed. Thus, it is defined that this PROCESS is 
affected by the change of signals in the specified list. If there is a variable to be used in the 
sequential code, its definition should be added to the presented location as VARIABLE. 
The scope of the defined variable is limited in PROCESS.

The most frequently used expression in the process is the IF structure. The IF structure 
is a structure used when the activation or deactivation of some codes depends on certain 
conditions. Here is how the IF structure is in VHDL.

If comparison then    -- mandatory line 
    VHDL statements; 
Elsif comparison then  -- not mandatory, in case of need 
    VHDL statements; 
Else                   -- not mandatory, in case of need 
    VHDL statements; 
End if;                 -- mandatory line 

An example code is shown below. With this code, x1 or x2 is transferred to the f signal 
according to the state of the Sel signal. In addition, the structure of the process and the 
sensitivity list can be seen. As can be understood, a multiplexer structure is presented 
here.

PROCESS (Sel, x1, x2) 
BEGIN 
    IF Sel = '0' THEN 
        f <= x1; 
    ELSE 
        f <= x2; 
    END IF; 
END PROCESS; 

From the expression given here, it is not clear how many bits wide or type x1, x2, and f 
are. However, all 3 signals must be of the same type and width.

The case statement can be viewed as an alternative to the nested if (elsif) statement. 
The fact that VHDL is a fully defined language shows itself here. Here, all states for 
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the signal (or variable) that is the input of the case structure should be given in options. 
Otherwise, synthesis will not be possible. In order to provide this situation easily, there is 
an option called others in VHDL. This is a term used to denote all alternatives other than 
those defined. The Case structure used in VHDL is given below.

case statement is 
    when value_1 => 
        VHDL statement; 
    when value_2 => 
        VHDL statement; 
    when value_3 => 
        VHDL statement; 
    when others => 
        VHDL statement; 
end case; 

Here, if the expression given between the “case” and “is” is a value other than value_1, 
value_2 and value_3, which is compared in case options, the “when others” tab will 
be active. The “when others” statement is not needed if all possible values are defined. 
Below is a multiplexer structure with 2 bit select inputs.

case Sel is 
    when "00" => 
        f <= x0; 
    when "01" => 
        f <= x1; 
    when "10" => 
        f <= x2; 
    when "11" => 
        f <= x3; 
end case; 

The “When others” are omitted as all possible states are mentioned here.

When we talk about loops in VHDL, we encounter for and while loops. A for loop is a 
loop used to execute a specific group of commands a specified times. The structure of 
the “for loop” is given below.

[Name :] for arbitrary name in start to stop loop 
    VHDL statements; 
end loop [Name]; 

For example, the design of a structure that finds the number of bits that are 1 in an A 
signal coming from outside is given below.
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process(A)  -- Defination of Process 
variable V1:integer range 0 to 7; 
begin 
    V1:=0; 
    for i in 0 to A'length-1 loop 
        if ( A(i) = '1' ) then 
            V1 := V1 + 1; 
        end if; 
    end loop; 
    X <= V1; 
end process; 

Another loop structure in VHDL is the while loop. The general structure of the while 
loop is given below.

[Name :] while Comparison Statement loop  
 
    VHDL ifadeleri; 
 
end loop [Name]; 

The design of a structure realized with a while loop that finds the number of bits that are 
1 in an incoming A signal is given below.

process(A) 
 variable V1 : integer range 0 to 7; 
 variable i : integer := 0; 
begin 
    V1 := 0; 
    while i < A'length loop 
        if ( A(i) = '1' ) then 
            V1 := V1 + 1; 
        end if; 
        i := i + 1; 
    end loop; 
    X <= V1; 
end process; 

The necessity of performing synchronized operations with the clock pulse in VHDL is 
a very common situation. In these cases, the detection of the pulse moment of the clock 
signal (as a rising edge or falling edge) becomes important. This process can be defined 
in VHDL with PROCESS and is controlled by the ‘EVENT statement. Below are two 
different examples that increase the value of the counter signal by one on the rising edge 
and by the other one the falling edge. The clk used here is a signal received from the 
global clock line, and the counter is an integer type signal that can be mathematically 
processed.
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The counter design triggered on the rising edge is as follows.

PROCESS (clk) 
Begin 
    If (clk'EVENT and clk='1') then 
        counter <= counter + 1; 
    End if; 
End process; 

The counter design triggered on the falling edge is as follows.

PROCESS (clk) 
Begin 
    If (clk'EVENT and clk='0') then 
        counter <= counter + 1; 
    End if; 
End process; 

The only difference between the two processes is that the clk in the second comparison 
in the if statement is equal to 1 in one and 0 in the other. Because the ‘EVENT statement 
is triggered on both rising edge and falling edge. However, the value of the triggered 
signal determines which edge it is. If there has been a trigger and the signal value is 1, it 
means a rising edge change. If there has been a trigger and the signal value is 0, it means 
a falling edge change.

An Example of VHDL Application

Let’s make an example application using what we have mentioned so far. For example, 
let’s design one 32kHz and one 1MHz signal generator using the 50 MHz clock signal. 
Let’s do this on a physical card. The card we will use in this example is the Altera 
DE2-115 FPGA board. This board has slide switches, buttons, leds, 7 segment displays, 
2-line LCD screen, SDRAM, SRAM, FLASH memory, 50MHz oscillator, DAC and 
VGA output ports and many ports and hardware. There is a Cyclone IV FPGA IC on 
this board. This is a development board and the datasheet details which pin of the FPGA 
IC is connected to which hardware. The picture of the development board is shown in 
Figure 5.
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Figure 5. Altera Cyclone IV EP4CE115F29C7 DE2-115 Development Board

This board contains the JTAG programming structure on its own. It is programmed  by 
connecting to a PC via USB with Quartus software web edition, which Altera company 
distributes free of charge. It is possible to write code in both VHDL and Verilog hardware 
description languages   with Quartus software. Here, after installing the Quartus software, 
it will be explained step by step how to create a project, how to simulate it and how to 
download to the FPGA IC. The Quartus software, whose images are given here, is v13.1 
version.

The screen shown in Figure 6 appears first. On this screen, there is the Project Navigator 
section in the upper left corner. Here is the information of the project being worked on. 
Under the Project Navigator section, items that we may want to see related to the project 
such as Hierarchy, files, design units etc. are listed in tabs. On this screen, creating a new 
project starts by clicking New Project Wizard or clicking New Project Wizard from the 
File menu.

Figure 6. Quartus Software Welcome Interface
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After clicking on the New Project Wizard, the Introduction page first appears. We proceed 
on this page with the Next button. On the next page, Directory, Name, Top-Level Entity 
information should be entered. This page view is given in Figure 7. Here, in the first line, 
the folder where our project will be saved should be selected. The second line contains 
the project name. The name we will give here is automatically transferred to the third 
line. Let’s give FREQ_DIVIDER as the name of this project. Let’s press the Next button 
to move to the next page.

Figure 7. New Project Creation Steps; Folder and Project Name Entry

On the next page, if you have VHD files that you have prepared before and need to use 
in the new project, a page will open for you to add them. Since there is no such need for 
this project, we can proceed with the Next button without taking any action.

Then, on the page shown in Figure 8, it will ask you to specify the FPGA IC you will use. 
There is Cyclone IV EP4CE115F29C7 IC on the development board we will use in this 
project. This device must be selected from the list.

Figure 8. Determining the Family and Name of the FPGA IC

Since we will not make any changes on the next pages, we can complete the process by 
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clicking Finish after this point. On the page that opens, the name of the FPGA IC used in 
the project and the name of the project can now be seen in Project Navigator.

For the operations to be done in this project, we need to add a new VHDL file. For this, 
clicking New from the File menu will open a list containing many file types. Select 
VHDL File from this list and click OK.

In the editor page that opens, we can start writing the codes of the frequency divider. 
Here, we need to write the library ieee command to indicate that we will use the ieee 
library first. Later, the std_logic_1164 and std_logic_arith packages that we will use in 
this project are added.

After this point, the Entity should be created. In this project, 1 input pin for 50MHz 
input, 1 input pin for reset and 2 output pins for 32kHz and 1MHz outputs are required.

Library ieee; 
Use ieee.std_logic_1164.all; 
Use ieee.std_logic_arith.all; 
 
Entity FREQ_DIVIDER is 
    Port( 
            clk :in std_logic; 
            rst  :in std_logic; 
            Q_32kHz :out std_logic; 
            Q_1MHz :out std_logic 
    ); 
    signal cntr_32k : unsigned (9 downto 0) := (others=>'0'); 
    signal cntr_1M  : unsigned (4 downto 0) := (others=>'0'); 
    signal sclk_32k :std_logic :='0'; 
    signal sclk_1M  :std_logic :='0'; 
end FREQ_DIVIDER; 

After this point, the architecture should be designed. The basic logic here would be: 
There is 20ns between two rising pulses of the 50MHz signal. Since 1MHz is 0 for 
500ns and 1 for 500ns, 1MHz signal output should change its level for every 25 pulses of 
50MHz signal. The 0 and 1 periods of the 32kHz signal are 15.63µs. Approximately 781 
pulses (781x20ns =15.62µs and f=32.01kHz) are needed to obtain this period. A 5-bit 
unsigned counter is needed to count 25 pulses, and a 10-bit unsigned counter is needed 
to count 781 pulses.

The logic in this architecture is to create 2 different counters. When these counters reach 
the specified numbers, they should toggle their output and reset their own counter. The 
created entity and architecture are as follows.
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Architecture Beh of FREQ_DIVIDER is 
Begin 
    process (clk,rst) 
    Begin 
        if (rst='1') then 
            cntr_32k <= (others=>'0'); 
            cntr_1M <= (others=>'0'); 
            sclk_1M <='0'; 
            sclk_32k <='0'; 
        elsif ( clk'Event AND clk='1' ) then 
            cntr_32k <= cntr_32k + 1; 
            cntr_1M <= cntr_1M + 1; 
            if (cntr_1M >= 25) then 
                sclk_1M <= not sclk_1M; 
                cntr_1M <= (others=>'0'); 
            end if; 
            if (cntr_32k >= 781) then 
                sclk_32k <= not sclk_32k; 
                cntr_32k <= (others=>'0'); 
            end if;          
        end if; 
    end process; 
    Q_32kHz<=sclk_32k; 
    Q_1MHz<=sclk_1M; 
end Beh; 

In this architecture, the frequencies created such as sclk_32k and sclk_1M are first 
transferred to an object of signal type and from there to the output. This is because the 
final value is inverted after a certain number of clock pulses. In order to perform an 
inversion operation, it is necessary to read the value of the signal first. However, since 
it cannot be read from the pins defined as out, firstly, the data is transferred to the signal 
object and then to the output.

The created file can be saved with the CTRL+S key combination. The project name 
automatically appears as the file name during recording. Here it is necessary to save 
without modification.

After saving, the project should be compiled. For this, click Start Compilation from the 
Processing menu. Compilation stages can be followed in the Task menu under Project 
Navigator on the left. The entire build process should be completed in green. Red errors 
can be observed in the warning messages pane at the bottom. The errors specified in this 
menu should be corrected and recompiled.

After a successful compilation, the simulation can be started. To start the simulation, 
select Run Simulation Tool from the Tools menu and RTL Simulation from the drop-
down menu when hovering over it. Then Quartus opens ModelSim software and adds a 
library called work. On the page that opens, the library is located on the far left. If the 



204

Programmable Smart Microcontroller Cards

mentioned menus are not visible, it is possible to open them from the Window menu of 
ModelSim.

When the Work in the library is expanded, the project name freq_divider appears under 
it. Double-clicking on the Freq_divider displays all signals defined in the project in the 
“Object list”. These signals (clk, rst, Q_32kz and Q_1MHz) are dragged and dropped 
into Wave windows, from which we will intervene and observe.

Right click clk in the Wave window and select Clock. Since the period is in picoseconds 
in the window that opens, enter 20000 and press the OK button.

Right click rst in the Wave window and click Force. The value of U is set to 0 in the 
window that opens.

After this point, we need to determine how long the simulation should be run. Since 
the longest period belonging to the 32kHz signal is 31.25µs, simulation duration can be 
50µs . For this, 50us is written in the upper middle area of   ModelSim that is 100ps on the 
start up. Instead of the symbol for micro µ, the u letter is used. Simulation is performed 
by clicking “Run 100 F9” in the Run tab from the Simulate menu. Right click on the 
simulation screen and select Zoom Full. The simulation result will appear as shown in 
Figure 9.

Figure 9. Wave Window Simulation Results of ModelSim Software

For the application, the pins of the FPGA IC must be associated with the pins defined 
in the entity. For this, click on Pin Planner in the Assignments menu. The Pin Planner 
interface shown in Figure 10 will open. There is an All Pins section at the bottom of this 
interface. Here are the pins defined in Entity. Here, the relevant pin numbers should be 
entered according to the datasheet on the Location tab. For example, Y2 pin is given 
for 50MHz. For reset operation, a push button connected to R24 can be selected. The 
outputs can be transferred to the outside world from the header ends or given to the 
LEDs for monitoring. Here, E21 and E22, which are the connections of the green LEDs, 
are used. Although their flashing is not obvious due to the high frequency, these LEDs 
on the board should be able to be observed at low brightness like a PWM with 50% duty.
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Figure 10. Pin Planner Interface

After this process, Pin Planner is closed. The project is compiled again. As a result 
of error-free compilation, it can be passed to the programming phase. The DE2-115 
development board is connected to the computer and its drivers are installed. For drivers, 
the Altera folder containing the installed version of the Quartus program should be 
searched. Then click Programmer in the Tools menu and the interface in Figure 11 will 
open. 

Figure 11. The Programmer Interface

The freq_divider of the prepared project should be seen on the opened page. If this 
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file does not exist, the add file button is pressed. In the opened interface, the FREQ_
DIVIDER.sof file is selected in the output_files folder in the folder where the project 
is located. When the start button is pressed, the program will be loaded into the FPGA.

FPGAs are integrated circuits with very powerful processing capacity. However, creating 
an embedded system with an FPGA is a very laborious and detailed work. According to 
the needed system, How much speed the needed how much processing load it has, how 
much hardware it needs to be solved with logic elements, the EEPROM capacity required 
for the program, etc. should be carefully determined, the FPGA to be used in line with 
these needs should be determined and the necessary PCB design should be made. All 
these issues should be carefully examined for determining the system structure to consist 
of an FPGA or microcontroller.
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