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Introduction

Almost every field of research and engineering-including materials science-is being del-
uged with enormous volumes of data from a wide range of sources (experiments and 
simulations) at a startling rate. Due to this, the fourth paradigm of research-data-driven 
science-has emerged. It builds on the enormous data that the first three paradigms of sci-
ence produced (experiment, theory, and simulation). To examine these data in a way that 
can contribute to expediting the discovery of new materials and achieving the goals of 
the Materials Genome Initiative (MGI), advanced approaches for data-driven analytics 
are required. The fourth paradigm of science makes use of scalable machine learning 
(ML) and data mining tools to draw conclusions that can be put into practice from such 
large amounts of data and guide materials design initiatives at various levels (Agrawal 
& Choudhary, 2019).

Because it enables the simultaneous establishment of a relationship between the struc-
ture, method, and qualities, predictive materials modeling has grown in importance as 
a research area (Agrawal & Choudhary, 2016). Realizing the best material quality is 
crucial for aerospace applications since the need to use the material for lower fuel con-
sumption, lower process costs, and increased mobility is constant. Crystallographic slip 
and lattice rotation are two mechanisms that cause the generation of texture and variabil-
ity in property distributions in such materials during forming processes. Controlling the 
deformation processes that result in the production of textures with appropriate property 
distributions is a valuable technique for developing materials (Acar, 2019).

The following sections explain the use of artificial intelligence in materials science with 
an emphasis on the current studies. The sections have different titles grouped as micro-
structure recognition, microstructure optimization, and prediction of mechanical proper-
ties of metallic materials.

Microstructure Recognition

Elemental composition

ElemNet, a brand-new deep learning network created by Jha et al. (2018), predicts the 
formation enthalpy of crystalline compounds using just their elemental composition as 
input. To create the deep learning model, they employed a sizable simulation dataset of 
DFT computations from the Open Quantum Materials Database (OQMD). The set of 
275,759 chemicals and their accompanying formation enthalpies formed the dataset. 
To test how well a model can function in such a scenario, the authors purposefully did 
not give the model any domain knowledge. Up to 24 layers, they investigated the fully 
linked neural network at various depths. Up until layer 17, when the deep learning model 
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reached a plateau, accuracy increased quickly. Both with and without physical features, 
ElemNet, the top-performing 17-layer neural network, outperformed conventional ma-
chine learning techniques. When utilizing solely elemental compositions as features, the 
top performing classical ML approach, Random Forest, produced a mean absolute error 
(MAE) of 0.157 eV/atom and 0.071 eV/atom when using composition-derived physical 
characteristics as input. ElemNet, which only accepts elemental compositions as input, 
was found to provide an MAE of 0.055 eV/atom, which is a substantially lower value. 
ElemNet outperforms Random Forest model (even with physical attributes) for all train-
ing set sizes more than 4000, according to modeling studies, which is another example of 
the superior performance of deep learning models on huge datasets. ElemNet was much 
faster for prediction time, but it took significantly longer for training.

Crystal structure

A CNN framework for crystal graphics was developed by Xie and Grossman (2017) to 
learn the properties of materials directly from the bonds between atoms in crystals. In 
their method, the crystal structure is first displayed as a crystal graph, with nodes repre-
senting atoms in a unit cell and edges representing bonds that bind atoms. CNN is then 
built graphically using convoluted layers, fully connected layers, and grouping layers to 
automatically extract the best views for modeling the desired properties. Their database 
contains 46,744 materials with 87 elements, 7 grid systems and 216 spatial groups from 
the Materials Project (Jain et al., 2013). To predict the formation energy, a simple con-
volution function with a common weight matrix for each neighboring atom produced 
an MAE of 0.108 eV / atom. Because they did not consider changes in the strength of 
interactions between neighbors, they created a new convolution function that does this in 
the form of a weight training matrix. This led to a significant improvement of the MAE 
of 0.039 eV/atom. Other DFT calculation parameters in the Materials project received 
the same structure.

Microstructure characterization

One of the primary procedures to increase our understanding of material is materials 
characterization, which broadly refers to discovering structural information about a par-
ticular material. A proliferation of material image data as a result of advancements in 
material characterization technologies at various time and length scales, including vari-
ous types of microscopy, spectroscopy, and macroscopic testing, has inspired the use of 
deep learning to address this inverse characterization problem (Agrawal & Choudhary, 
2019).

Although microstructural characterization is crucial and well acknowledged, classifying 
it is difficult to undertake. Despite the rapid advancement of digital photography and 
computer systems, specialists still “manually” assess a given image of a structure to 
classify its microstructure. In situations where there is a mix of different phases with 
different substructures, classification can seem incredibly challenging. Any effort in that 
approach can be beneficial because there is no proof of computer systems that allow the 
automatic classification of microstructure (Mulewicz et al., 2019).

Microstructure image data can offer a unique perspective on the processes creating mi-
crostructures and the mechanisms behind material behavior and performance since they 
are rich in information about the morphology and suggested a composition of constituent 
phases. Thus, the study of micrographs (i.e., microstructure image data) is crucial for 
establishing processing-structure-property correlations and for developing new material 
systems in numerous materials science investigations. Despite the widespread use of mi-
crographs in material science research, there are still substantial difficulties with reliable 
and consistent picture data interpretation. These difficulties result from the specialized 
knowledge and abilities needed to obtain micrographs, the various types of image data 
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that can be obtained (such as from optical and electron microscopy), the difficulties 
associated with particular domains for image analysis methods, and more. The use of 
known AI approaches to microstructure recognition and analysis brings up a possibility 
for computationally guided experiments and objective, reproducible analysis of picture 
data as AI (i.e., machine learning) advances in a wide range of domains (Ma et al., 2020).

Development of the model for two microstructural segmentation tasks: i Semantic 
segmentation of steel micrographs into four regions: intergranular carbides, spherical 
granule matrix, open grain regions and Widmanstaten cementite. and (ii) segmentation 
of cementite particles into a spherical particle matrix), DeCost et al. (2019) presents a 
deep learning solution for the quantitative microstructural analysis of high carbon steels. 
Because segmentation is a pixel-level operation, as opposed to image classification, a 
CNN must generate a latent representation of each pixel rather than the entire image. To 
achieve this, the authors used the PixelNet architecture, in which each pixel is represent-
ed by concatenating the representation of each convolutional layer by applying bilinear 
interpolation to the characteristic inter-pixel map and obtaining a characteristic hyper-
column vector for each pixel. The properties of the hypercolumn pixel are then mapped 
to the corresponding target or segmentation class using MLP. For the PixelNet convo-
lutional layer, they used a pre-trained VGG16 network and trained the MLP layer from 
scratch using batch regularization, training, weight loss adjustment and data growth. The 
basic function of the cross-entropy classification loss and the extension of the focal loss 
of the cross-classification loss function were investigated using modulation factors and 
scale parameters to take into account the model reliability and class imbalance, respec-
tively. The data set consisted of 24 micrographs of high carbon steel with a resolution 
of 645 x 484. Cross-validation was used six times to assess the segmentation accuracy 
of the model and to compare the actual and predicted particle size distributions and the 
width of the unclosed region. The segmentation model with concentrated loss functions 
proved to be the most accurate for spheroid and particle segmentation. Because the mod-
el could not recognize particles smaller than 5 pixels in radius, most of the predicted 
particle size distributions proved to be different from the annotated human micrographs, 
indicating the need for a high quality input for training. However, their study showed 
that deep learning is effective for microstructure segmentation and quantitative analysis 
of complex microstructures with a high level of abstraction. Fig. 1 presents the combined 
prediction of the microstructure of the particle model and the abstract microstructure 
model.

Figure 1. a - d: Micrographs with (e - h) validation set microconstituent predictions and (i - l) derived 
PSDs obtained by applying the particle segmentation CNN to the semantic microstructure segmentation 

dataset. Scale bars indicate 10 µm (DeCost et al., 2019)
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To categorize steel microstructures, Mulewicz et al. (2019) applied methods from the 
rapidly evolving field of image analysis based on artificial intelligence, specifically deep 
learning. The development and application of Deep Convolutional Neural Networks 
(DCNN) for the categorization of various steel microstructure pictures obtained by light 
microscopy was the main focus of their research. The neural network was trained using 
the back-propagation method and the gradient descent optimization technique. Their 
findings demonstrate that the sophisticated Deep Convolution Neural Network-based 
system may be used to classify various low alloy steel microstructures.

For automatic microstructure recognition, Chowdhury et al. (2016) used computer vi-
sion (CV) and machine learning (ML) techniques. The techniques involved recognizing 
an important microstructural feature (dendrites) from micrographs that don’t have it (just 
as a human expert would identify that a micro-graph contains dendrites). This challenge 
of recognition is known as Task 1. Dendrites are a sort of microstructural feature that is 
not unique to a material system, making Task 1 a high-level microstructure recognition 
task. It was also accomplished to discriminate between the longitudinal and transverse 
cross-sectional images of dendritic microstructures (known as Task 2). If Task 1’s mi-
crograph was determined to be a dendritic, a second binary classification task was car-
ried out with the intention of differentiating between two distinct cross-sectional views. 
There were a total of 528 and 188 photos in the data sets for Tasks 1 and 2, respectively. 
To represent micrographs as feature vectors, approaches for feature extraction and di-
mensionality reduction were used. Support vector machines (linear and non-linear), vot-
ing, nearest neighbor, and random forest models were then used for classification. The 
classification accuracy for complete and reduced feature vectors, as well as for each fea-
ture extraction and selection technique examined, was calculated for each model. Their 
findings showed that pre-trained neural networks accurately depict micrographs without 
the need to know the characteristics of the objects or shapes in the images. Additionally, 
most classifier and feature selection approaches studied showed the highest classifica-
tion accuracy when pre-trained neural networks were utilized in the feature extraction. 
Pre-trained neural networks are hence broadly applicable. For Tasks 1 and 2, the highest 
classification accuracy results were 91.85% + 4.25% and 97.37% + 3.33%, respectively. 
In a related study, Holm et al. (2020) used convolutional neural network (CNN) layers 
or feature-based representations to numerically encode the visual information present 
in a microstructural image, which serves as input to supervised or unsupervised ML 
algorithms that discover associations and trends in the high-dimensional image repre-
sentation.

Ma et al. (2020) investigated the representational techniques for microstructures with 
the goal of using microstructure images to forecast processing conditions. To develop 
a better machine learning method for picture recognition, characterization, and creating 
predictive skills tying microstructure to processing conditions, a binary alloy (urani-
um-molybdenum) developed as a nuclear fuel was researched. They experiment with 
various microstructure representations and gauge the effectiveness of the models using 
the F1 score. For differentiating between micrographs corresponding to 10 different ther-
mo-mechanical material processing conditions, an F1 score of 95.1% was attained. The 
traditional method of using area fractions of different phases was found to be insufficient 
for differentiating between multiple classes using a relatively small, imbalanced original 
dataset of 272 images. Instead, they discovered that the newly developed microstructure 
representation described image data well. Generative adversarial networks were trained 
to produce artifactual microstructure images to investigate the applicability of genera-
tive techniques for enhancing such constrained datasets.

Software for automating metallographic quality control of metals was created by Zhilen-
kov et al. (2021). It was based on an established approach for identifying the metal grade 
and on the use of neural networks to recognize photographs of metal microstructures. 
To ascertain the numerical properties of metals, a neural network’s structure has been 
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devised. They carried out the binarization of the metal microstructure image. Otsu’s 
method was employed for binarization since it is the most successful approach for global 
binarization. Then, rather than employing the brightness values of objects, the informa-
tive elements of the image of the microstructure were created using the properties of the 
borders, i.e., contours. The Prewitt filter was used to create a precise image of object 
borders and homogenous region outlines for selecting contours, as shown in Fig. 2.

Figure 2. The result of the preliminary processing of the image of the metal microstructure: (a) gray-
scale microstructure image; (b) binarization of the metal microstructure image; (c) image thinning opera-
tion and boundary detection with Prewitt’s filter (Zhilenkov et al., 2021)

The values describing the picture segments of the metal microstructure were established 
after the base points on the image were fixed and it was vectorized. Triangle hypote-
nuses, which were created by perpendicular dropped from two neighboring base points, 
shaped segment elements. The segment elements’ sine and cosine values (sin (A), cos 
(A)) were given into the neural network’s input for learning. The Prewitt gradient (Gp), 
which establishes the contrast value, was also a factor employed as an input parameter. 
Fig. 3 depicts the design of the neural network used in metallographic analysis to identi-
fy the grain point in the metal structure.

Figure 3. The structure of the neural network for determining the quantitative characteristics of the met-
al (Zhilenkov et al., 2021)

Microstructure Optimization

The material design groups have recently begun showing a lot of interest in the ML para-
digm (Green et al., 2017; Hattrick-Simpers et al., 2016; Mueller et al., 2016; Ramprasad 
et al., 2017; Ward and Wolverton, 2017). Traditional experiments and computer model-
ing techniques frequently require a lot of time and resources and are constrained by the 
experimental settings or theoretical underpinnings, which is the major justification for 
integrating ML algorithms into material design challenges. As a result, ML has gained 
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recognition as an effective option for speeding up the process of material discovery and 
design. To comprehend the nature of the thermomechanical processes and their relation-
ship to the material properties, the process design problem has been investigated in the 
literature using ML techniques (Abbod et al., 2002; Fang et al., 2009; Han et al., 2011; 
Zhu et al., 2003).

Acar (2019) used ML techniques to determine the best way to process a texture design. 
The problem of process design was investigated for this reason by using the transductive 
learning (TL) algorithm. There are two key data notions in this algorithm. The first one 
contained “labeled” data, or data that could be matched with a predetermined state (la-
bel) from a database of various labels. The second one had “unlabeled” data that could 
not be directly matched with the labels that were provided, necessitating the use of ML 
techniques. A database for microstructural textures and deformation processes including 
tension, compression, xy shear, xz shear, and yz shear was created for this reason. The 
orientation distribution function (ODF) samples, which represented the starting textures 
for the various deformation processes, were first created using Latin hypercube sampling 
(LHS). The final texture information was then stored after simulating the deformation 
operations. The labeled dataset thus consisted of the known input ODF samples and the 
related output data. Here, utilizing the coordinate optimization strategy given by the TL 
method, the goal was to find the labels of the unlabeled designs. The galfenol alloy ex-
ample problems were addressed using two solutions. In the first application, a previously 
researched vibration tuning problem’s process design challenge (Acar & Sundararagha-
van, 2016) was handled for the best numerous ODF solutions.

The findings were verified with the findings of the prior investigation. The TL technique 
was utilized in the following example to find the ideal deformation process, which could 
lead to a particularly ideal galfenol microstructure design for a multiphysics problem. 
Because it provided information on both the ideal and nearly optimal processes, it was 
discovered that the TL technique was effective to the problem of process design. The 
best deformation method was then identified using a multiphysics problem’s unique 
optimal galfenol microstructure design developed using the TL methodology. The TL 
technique was proven to be efficient for the difficulties of process design because it gave 
information on both the perfect and nearly ideal processes. Any unlabeled ODF infor-
mation could be used to determine the label (process) using the TL algorithm. For this, 
LHS was used to create 100 evenly distributed ODF samples for each process (tension, 
plane strain compression, xy, xz, and yz shear). All processes were predicated on the 
same process parameters, such as strain rate and total time. Fig. 4 provides a thorough 
explanation of the TL solution to the process design problem using the TL algorithm, as 
well as the best ODF solution to the issue. Basic ODF samples were created using LHS 
in this task, and initial textures were used to simulate various deformation processes. 
The related deformation processes were recorded and identified on the output textures 
(ODFs). Using the label data that was previously stored, the label of an unlabeled ODF 
design was to be found. The coordinate parameter for each label was discovered using 
the coordinate optimization method. The labels of the unlabeled designs were then as-
signed in accordance with the criteria for the minimal distance. The optimal deformation 
process, which was the one most likely to result in the ideal galfenol microstructure de-
sign of the optimization problem, was found by solving the process design problem. The 
best design is the one that minimizes magnetostrictive strain while also meeting the yield 
stress design limitation (yield stress>555 MPa). Allenol is a magnetostrictive alloy that, 
in some orientations, exhibits higher magnetostrictive strain values as well as favorable 
structural characteristics (such stiffness and yield stress). As a result, it is a useful mate-
rial for applications involving many physics, particularly to enhance the magnetic and 
structural features that were examined in their study.
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Figure 4. Process design problem of the transductive learning algorithm (left), optimum ODF solution in 
the problem (right) (Acar, 2019)

Prediction of Mechanical Properties

For the fourth Industrial Revolution’s growth of materials science, artificial intelligence 
has received a lot of attention. Artificial Neural Networks (ANNs), a mathematical tech-
nique that matches intricate correlations between input and output layers, can produce 
superior mechanical qualities with optimal process parameters (Jung et al., 2020). Jung 
et al. (2020) predicted tensile strength, yield strength and flow ratio using microstruc-
tural data of volume fractions using ANNs. They used linear regression and neural net-
work-based algorithms to study combinations of polygonal ferrite (PF), needle ferrite 
(AF), granular bainite (GB), bainite ferrite (BF) and martensite M (martensite). They 
calculated the theoretical resistance by calculating the flow limit based on the micro-
structure. They hypothesized that the yield strength of an alloy could be calculated by 
simply adding each hardening parameter by work, based on a model governed by a 
displacement sliding system. The linear regression of the inverse distribution was used 
to accurately predict the effect of each microstructure on three mechanical parameters. 
The trend of yield strength deviation with each volume percentage of the microstructure 
is shown in Fig. 5. (PF, AF, GB, BF and M). The mean absolute percentage errors of the 
validation and testing set of the deep learning algorithm using hyperparameter matching 
and cross-validation were 6.59% and 10.78%, respectively. Their algorithm demonstrat-
ed good accuracy in predicting experimental data.

Figure 5. Yield strength tendency prediction with PF, AF, GB, BF, and M via back propagated linear 
regression (Jung et al., 2020)
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In modeling the relationship between the chemical composition and properties of DP 
steels, Krajewski and Nowacki (2014) suggested a method for determining the tensile 
strength and yield strength of dual phase (DP) steels using ANNs. Based on the literature 
sources, they gathered a material database outlining the characteristics of the DP steels. 
To calculate the impact of alloying components, heat treatment settings, transition tem-
perature, and microstructural characteristics on the mechanical properties of steels, an 
ANN model was developed. The BFGS (Broyden-Fletcher-Goldfarb-Shanno) training 
algorithm was used to create the chemical makeup of DP steels that would have the nec-
essary tensile strength. The logistic activation function was utilized to forecast using the 
MLP 14-7-2 multilayer feed forward neural network (14 inputs, 7 neurons in the hidden 
layer, and 2 outputs: yield strength and tensile strength). Using a neural network simula-
tion, Fig. 6 depicts the effects of two sample alloying components, including carbon, sil-
icon, and manganese, on the tensile strength of steel under set heat treatment conditions 
and constant concentrations of the other alloying elements.

  

Figure 6. Effect of the concentration of alloying elements on the tensile strength of DP steels; carbon 
and silicon (left), manganese and carbon (middle), manganese and silicon (right) (Krajewski & Nowac-
ki, 2014)

Li et al. (2021) used machine learning to predict the hole expansion capacity of high 
strength steels using an experimental dataset made up of the phase constituents of 55 
microstructures and corresponding properties, such as yield strength and hole expansion 
capacity, that were gathered from the literature. These data were statistically analyzed 
with an emphasis on the hole growth capacity with respect to individual phases, phase 
combinations, and the total number of phases. The prediction of hole expansion capacity 
based on phase fractions and chemical composition used various ML techniques. Based 
on phase fractions and chemical composition, deep learning produced the hole expan-
sion capacity predictions with the highest degree of accuracy.

The Materials Genome Integration System Phase and Property Analysis (MIPHA), an 
ML tool, was created by Wang et al. (2019) for inverse analysis of steels, where a genetic 
algorithm was used to explore the potential best-balanced property of tensile strength 
and total elongation and its corresponding microstructure and processing conditions. The 
analytical model was fitted using a standard ANN with one hidden layer and the sigmoid 
function as the activation function. According to their findings, the properties-to-micro-
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structure/processing analysis approach was successful in identifying the model that pro-
duced the greatest outcomes, had the best property balance, and had the most plausible 
correlations between processing, microstructure, and properties. It has been discovered 
that a microstructure-comprising Widmanstatten ferrite, bainite, and martensite is ad-
vantageous for a good balanced property.
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