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ABSTRACT: In this paper, we present a study that can be seen as a partial bridge between didactic researches 

centered around epistemological concerns like epistemological obstacles and sociological approaches that can be 

used in educational sciences. To do so we use an anthropological approach to the didactic of mathematics, the 

anthropological theory of the didactic (ATD) and in particular its “scale of levels of didactic codetermination”. 

This enables us to bring into the fore a set of constraints emanating from institutions located at a high level of this 

scale. The two institutions we are considering are the modern mathematics reform and the counter-reform that 

followed. The constraints generated by these institutions form a dense network that compels the possible shapes 

mathematical knowledge can take on. Such stringency leads to some hybridization of the deductive and 

argumentative architecture of courses subdued to these constraints. The concepts become two sided. They bear at 

the same time a mathematical side, the most visible one, which has a mathematical legitimacy and another less 

visible one whose role is to allow these concepts’ ecological viability. The implicit and unconscious shifts between 

these two polarities tend to reinforce cultural mimetic encounters of knowledge based on ostensive practices. 
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INTRODUCTION 

This paper presents an ongoing research. It is short since we formally began to work on this topic only two months 

ago. Moreover, we are not yet able to fully position ourselves among the existing literature because of the specific 

context in which this research emerged. It first began as a teacher questioning and not a researcher interrogation: 

“How is it that in spite of all our efforts, the failure rates to our course is so high?” From this initial teacher 

perspective, an answer had to be found, not in scientific papers, but by merely “looking” at our high school’s 

ordinary working. 

Nevertheless, the study of this question led us to gradually depart from our initial approach in two ways. 

• We had to consider a new question, related to the initial one, about high failure rates: the question of

understanding antinomies found within our own course. This new question became the central one, the 

other being subordinated to it. 

• We were “forced” to embrace theoretical tools that would allow us to tackle this new question, namely

the Anthropological Theory of the Didactic (ATD) developed by Yves Chevallard (1992). Most notably 

we will make use of one of its fundamental tools, the scale of levels of didactic codetermination. ATD 

had indeed the potentiality to endow us with concepts allowing us to formulate hypotheses about the 

possible shape a mathematical knowledge can take on. 

These two elements mark our transition from teachers to researchers. 

This paper is structured as follow. We start by giving an account of the salient steps that took us from our initial 

question of high failure rates, to a scientific approach and the question of antinomies. We then give an example of 

an antinomy to illustrate what we mean by it and at what level it is located. The section that follows introduces 

ATD and the tools we need to interpret these antinomies, namely that they are the resultant of two opposing types 

of institutional constraints. We conclude with the importance of taking into account those types of constraints, if 

one wants to be able to understand what shape a knowledge can or cannot take on in a mathematical course. 

FROM A TEACHER QUESTION TO A RESEARCHER QUESTION 

Let us start by first explaining the institutional framework in which our initial question took place. We and three 

other teachers are giving a mathematical course to 500 first year students in a Belgian high-school in economy, 

business and management. The course content is very similar to a secondary school curriculum. There is a chapter 

devoted to the “theory” of functions which limit itself to real function of a single real variable, assorted with a few 
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concepts, those found in secondary school, like, for instance, domain of a function, injectivity and monotonicity. 

Then, coming chapters devoted to specific classes of functions (first degree functions, second degree functions, 

etc.). Among these chapters, one is of special interest for our purpose. We will draw on it to give an example of 

what we call antinomies within the course. This chapter deals with exponential, logarithmic and reciprocal 

functions. Another chapter deals with non-constrained optimization, of one real variable functions, using 

derivatives (study of the first and second derivatives). Those reminders are broadened out with classical economic 

applications: budget line, elasticity, and equilibrium between supply and demand. 

 

Besides these secondary level chapters, they are two others dealing with topics new to students. One chapter is 

introducing elements of first order logic, mostly logical connectors (∧, ∨, ¬, ⇒) and quantifiers (∃, ∀). Another is 

introducing linear programming restricted to two variables. These linear programming problems are not solved by 

the simplex method, but rather using a geometrical approach that consists in calculating an “intersection” between 

a polygon and a parallel sheaf of lines. 

 

One reason for the limited course content is the great variety of students’ profiles. Some didn’t do any mathematics 

for one year or more, while others had 8 hours of mathematics per week. Among these varied profiles, none seems 

to be more prevalent than others. 

 

The only salient fact we had to face are the high failure rates, between 50% and 75% for the last five years, despite 

numerous attempts to improve the situation: new exercises with detailed solutions, improved explanation based on 

reocurring errors, decreased number of students in groups, methodology courses part of the curriculum, etc. Our 

purpose is not to detail all the innovations devised by teachers but rather to highlight the amount of energy invested 

and the almost zero return, to the point some of our colleagues didn’t want to be in charge of the course anymore.  

 

Different leads were envisioned to explain the situation. Might the problem be related to the new knowledge (logic 

and linear programming)? This hypothesis turned out to be false. Students had as much trouble with secondary 

school knowledge than with linear programming.  Might the high failures rates be correlated with the number of 

hours per week students had in secondary school? The answer was negative as well. More hours didn’t mean 

higher success rates. Given those negative answers, a trend among our colleagues emerged: the students themselves 

had to be the reason for the high failure rates: they are not working enough and they show no real interest in 

mathematics.  

 

This standpoint cannot be entirely rejected, for it is true that our students are rather immature. For instance, when 

given (very easy) exercises to prepare, most don’t do anything, except wait for the teacher to give the “right” 

answer. In classroom, they spend more time playing with electronic devices than working on mathematics. The 

list of immature behavior is almost endless but it is not our point to be harsh on the students and blame them for 

everything. Even if we share the idea that they should be more involved in their studies, we were led to take into 

consideration another dimension that remained hidden for quite some time.  

 

We found antinomies within our own course. We thus had to consider the possibility that these were, at least partly, 

accountable for students’ high failure rates. We moreover thought this lead was all the more credible for several 

reasons. They were many of them, not just a few. They were scattered throughout the course and they were all 

related to the course’s deductive architecture. That could not be a coincidence. 

 

ANTINOMIES 

 

Let us give an example of an antinomy found in the chapter introducing exponential functions and logarithmic 

functions as reciprocal of exponentials. We first start by pointing out “strange things” within the chapter then we 

explain why these “strange things” together form an antinomy. 

 

A first problem is found, right from the start, within the very definitions of these types of functions. The exponential 

functions are defined as functions of the form: 

 

𝑥 ↦ 𝑓(𝑥) = 𝐶 ⋅ 𝑎𝑥 

 

where 𝐶 ≠ 0, 𝑎 > 0 and 𝑎 ≠ 1. The problem is that this definition does not satisfy the property: 

 

𝑓(𝑥 + 𝑦) = 𝑓(𝑥) ⋅ 𝑓(𝑦) 
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later announced as a fundamental property of exponentials. Put that way, the contradiction seems blatant. How did 

it get unnoticed? The way it is dressed in the course is rather tricky and not that easy to detect. The initial definition 

given to students is that of functions having an exponential growth (𝑥 ↦ 𝑓(𝑥) = 𝐶 ⋅ 𝑎𝑥). At that point in the course 

it is not clear if these functions are meant to be exactly the exponential functions or not. It is only by looking 

carefully at various semantic shifts that we finally have to conclude that functions having an exponential growth 

are the same as exponentials functions. Without that careful analysis, the problematic connection would have gone 

undetected. 

 

We now turn to the second definition, that of logarithmic functions. Contrary to the chapter’s purpose, they are 

not explicitly defined as reciprocal of exponentials, but instead, in a rather loose way, using notations that allows 

students not to integrate this relationship and its relevance: 

 

exp𝑎(𝑥) = 𝑦 ⇔ 𝑥 = log𝑎(𝑦) 

 

The reciprocal relationship between exponentials and logarithmic functions is merely stated afterwards, as a 

property among many others. This leads us to another oddity. 

 

All exponentials and logarithmic functions’ properties are on an equal footing. The fact that some are consequences 

of others is completely silenced. This leveling resonates with the given “proofs” of those properties. 

 

They are no actual proofs of exponential functions’ properties. In place, we find formal plays between the notations 

𝑎𝑥 and exp𝑎(𝑥), used to “reformulate” the various properties. The status of these plays is never clarified to the 

students to the point that some do consider them as genuine proofs. 

 

Getting back again to logarithmic functions, we find this time actual proofs but no unified proof principle is put 

forward. Each proof is a special case requiring some form of “illumination” on the part of the creator. The 

reciprocal operator on functions is not presented as a mean to automatically transport properties from one class of 

functions to another. The reciprocal operator thus plays no role in the deductive architecture of logarithmic 

functions, not even in its definition. What is then its purpose in the course?  

 

The above description of the chapter about exponentials and logarithmic functions exemplifies what we label as 

an antinomy. It is the global way exponentials and logarithmic functions are treated that is antinomic. Looking 

from a distance, we might be under the illusion that a perfectly ordinary deductive presentation of the subject is 

given to students. But, exerting a sharper look, reveals “strange details” that, taken as a whole, highlight an 

evanescent deductive architecture. This is where the antinomy is located: the presence of a deductive architecture 

looking at the big picture and no deductive architecture looking closer. 

 

This example, characteristic of antinomies found in the course, rises questions. Here are a few, given in no 

particular order, to illustrate the dynamic antinomies are able to generate. 

 

• (Q1) How is it possible for such an elementary course to be filled with antinomies? 

• (Q2) Why are our colleagues left rather unmoved or at best annoyed when we present them with these 

antinomies? 

• (Q3) Why did it take us so much time to detect these antinomies and be able to put them into words? 

• (Q4) Why maintain the illusion of a deductive architecture when there is almost none? To what end? 

 

Answers to these questions, formulated as hypothesis, can be given when we introduce the theoretical tools of the 

next section. 

 

THEORITICAL FRAMEWORK 

 

What kind of theory do we need to address questions 1 to 4? Because of their specific nature, the studied antinomies 

are not that easy to detect or talk about. They are not, so to speak, “direct” mathematical errors, like an erroneous 

proof, or a computational mistake. They nevertheless belong to the mathematical sphere. They are related to the 

relationships teachers have towards mathematics, relationships that end up in a double play around the course’s 

deductive architecture. Based on this characteristic, we felt we had to turn ourselves towards a didactical theory 

that could take into account the relationships people can have with knowledge. This is precisely some of the things 
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ATD1 is capable of. A basic tenet of ATD is to consider knowledge as emerging from human practices (Chevallard, 

1992). These practices happen in institutions. In ATD’s sense an institution can be an institution in an ordinary 

sense but it is not limited to that. It can be, for instance, a particular school of thought, like bourbakism we shall 

talk about in the next section. The strength of this approach is to take a step back from epistemologies, like 

Platonism, that consider knowledge, especially mathematical one, as something immutable, independent of any 

cultural background, at least when its “true essence” has been put to light. Taking that step back allows oneself to 

formulate hypothesis about antinomies or any didactical problem in terms of institutional disparities. This is what 

ATD calls analysis of transposition (Chevallard, 1991). Such an analysis has been a main tool of action in the 

French school of didactics, for several decades. This is the theoretical framework which we adopt in this paper.  

 

The analysis of transposition is somewhat formalized relying on the scale of levels of didactic codetermination 

tool (Chevallard, 2005). The basic idea leading to the scale is to take into account the impact on knowledge of 

institutions located at different strata of society, ranging from a specific mathematical subject, like the definition 

of exponential functions, to civilization issues. Taking into account all these strata can be seen as a tangible mark 

of ATD’s willingness to be a systemic approach to didactic. An institution located at the level of civilization is for 

instance the peculiar way Greek mathematicians envisioned numbers. To them, the only genuine ones were the 

natural numbers. Without taking this relationship to numbers into account, it is hardly possible to understand Greek 

Mathematics.  

 

The strata are arranged into a scale. The levels of that scale, from the lowest to the highest, are: subject, theme, 

sector, domain, discipline, pedagogy, school, society, civilization. The sequencing used in the scale is just a 

convenient way or organizing the strata and, by no mean, implies any kind of superiority of the high levels of the 

scale upon the low levels. The low to high sequencing merely captures the idea of taking into account institutions 

having broader and broader scopes.  

 

According to Schneider (2013), the scale of levels is, among other things, what reveals ATD’s scientific potential, 

because the crossing of different levels allows one to put to test the hypothesis drawn from ATD about a specific 

issue, antinomies in our case. Those hypotheses are thus falsifiable in the sense of Popper (1959). This turns the 

“specific issue”, together with the hypothesis put forward within ATD’s framework, into a didactical phenomenon 

and not just an opinion. We will use the word phenomenotechnical to qualify ATD’s scientific potential as 

elaborated by Schneider (2013) who built on Bachelard’s neologism phenomenotechnical found in his famous 

applied rationalism (1949). 

 

INSTITUTIONAL CONSTRAINTS 

 

Armed with the spirit of ATD, we now consider two institutions located at high levels of the scale (society and 

above). The first one is the modern mathematics reform and the second one the counter-reform to the modern one. 

 

Institution I: the modern mathematics reform 

 

Starting in the 30s, Bourbaki, a group of mathematicians, deeply changed mathematics. They helped to unify it 

relying on structures, spreading to the whole discipline, what van der Waerden (1930) had begun in algebra. The 

benefits were considerable and still have repercussions nowadays. They helped to pave the way to previously 

unsolved problems: Fermat’s last theorem not to mention it. One key feature of structures is the ability to use a 

way of tackling a problem in a particular context and to transfer it to another that are governed by the same structure 

(Houzel, 2004). This initiative comes at a cost. Since then mathematics are based on more abstract concepts than 

ever before (Aczel, 2009). With Bourbaki, structures, the axiomatic method of Hilbert and deductive architectures 

have more than ever become part of what mathematics are. 

 

This revolution led, together with other factors (economical, political, intellectual), to reform secondary school 

curricula, starting in the sixties (Houdebine, 1994). The modern mathematics reform was born. One strong trend 

found among the teaching principles was that abstract structures have to be taught from the start because they were 

considered to be “natural” for they are “isomorphic” to “structures” found in human minds (Charlot, 1984). 

Abstract group theory (Dienes, 1971) and set theory (Papy, 1963) are taught in secondary school and even in 

primary school in some cases. 

 

                                                           
1 It is a complex theory with lots of concepts. We shall limit our presentation to those that fit our needs. The interested reader will find a detailed 
account of ATD in, for instance, Bosch & Gascon (2014). 
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The reform turned out to be a global disaster. Pupils could at best understand mathematics as a (meaningless) game 

based on (mathematical) words, they saw no connection to the “real” world (Houdebine, 1994). 

 

Institution II: the counter-reform 

 

By the end of the 70s, the modern mathematics reform was put to sleep. A counter-reform took place that intended 

to undo the damages of the reform. This broadly meant: make mathematics meaningful (again). The perceived 

collusion between Bourbaki’s unifying effort and the reform led the counter-reform to somewhat go against what 

mathematics had turned into the 20th century. Set « theory » including notations were put aside as it was seen as 

one of the most meaningless aspect of the reform. Structures were also mostly put aside. The only remains were 

pieces of the theory of functions. Those pieces are the ones still present nowadays in secondary school we alluded 

to in the previous sections: injectivity, reciprocal, etc. The deductive architecture of mathematics, including proofs, 

became less important than the following principles. 

 

• Mathematical concepts should be strongly linked to the « real » world 

• Teaching should proceed from « concrete » to « abstract » 

• Learning activities should be centered on pupils’ background… 

 

Putting it all together 

 

We might be as much critical about the reform than the counter-reform. It is not our point here. Instead our goal 

is to explain how the articulation between these institutions allows us to make sense of the antinomies discussed 

in the previous sections.  

 

In Belgium, to become a mathematics teacher, you first need to have a degree in mathematics2 (5 years) and then 

you are trained to become a teacher during 1 year. So, a teacher foundation is first of all that of a non-professional 

mathematician: you learn about theories but you are not supposed to actually engage in any kind of research. The 

kind of mathematics they learned are mostly highly formalized following mathematics’ evolution impacted by 

Bourbaki among others. So, to them, mathematics is all about structures, deductive architecture and proofs. This 

is what you mostly learn in courses: theorems and their proofs. Most teachers do not therefore consider the 

possibility of doing genuine (that is rigorous) mathematics another way. 

 

But the counter-reform puts them in a paradox. How do they teach mathematics, “as they are”, if their essence is 

frowned upon? They have to embrace nowadays students, the children of the counter-reform, and the somewhat 

contradictory constraints from institutions I and II. One way of dealing with such a situation is to use concepts that 

resemble their genuine mathematical counterparts. Those pedagogic concepts are “designed” for their ability to be 

given a “concrete” meaning. 

 

For example, the reciprocal of a function’s role, in the course, is not to transfer properties from exponentials to 

logarithmic functions. Such a use of reciprocals is deemed too “abstract” from the counter-reform point of view. 

The teachers thus have to resort to tricks to conciliate both institutions they are subordinated to. On the one hand, 

they have to make use of reciprocals because that is a sound mathematical way to proceed from the first 

institution’s perspective. On the other hand, they have to ornament the reciprocals’ mathematical use to fit it into 

the counter-reform ideology and the resulting school ecology. So, reciprocals are presented as something 

susceptible of a graphical interpretation (a symmetry between two graphs under 𝑦 = 𝑥), because graphical 

interpretation are considered as a fundamental way of conveying meaning. Doing so, everything is fine in the 

classroom. Students understand what they see on the board because of its graphical nature and mathematics’ 

morality is safe because reciprocals were used: the reciprocal mathematical concept has been superseded with 

pedagogical one looking exactly the same at a distance. 

 

Using this double play of concepts at the scale of an entire course results in a deductive architecture that is teared 

down when looking more carefully. This way of doing mathematics is not to be blamed as such on the teachers. 

Most of them do not see what is going on with such a course. They are, so to speak, forced into such doings 

unwillingly, due to the very nature of the ecology they are involved in. Teachers, in our high school that tried to 

stick to a strict formal mathematical course ended up into the sidings.  

 

This way of doing mathematics “works” to a certain extent because it allows students to learn by heart and teachers 

to pretend they are giving a genuine mathematical course even if its level is very low. But it doesn’t really work 

                                                           
2 In some cases, engineers and physicist are allowed to become mathematics teachers. 
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because concepts taken from the theory of functions such as reciprocals are not meant to be “concrete” the way 

they are concretized in the course. What do students really learn? 

 

CONCLUSIONS 

 

We have shown that the question of the high failure rates in the course, although of importance, is just the tip of 

the iceberg, that of the various institutions that impact what a teacher can or cannot do within a mathematical 

course. In our case, these institutions are the reform and the counter-reform. Taking into account these two allowed 

us to make sense of the antinomies found in the course and go beyond restrictive interpretations in terms of 

students’ misbehavior and/or teachers’ inabilities. The high levels of the scale of didactic codetermination convey 

a message. The impact of individuals, whether they are teachers or students, shouldn’t be underestimated, but the 

institutional ecology to which they belong must be taken into account if we want to be able to understand various 

antinomies that cannot be accounted for relying solely on individual behaviors. In this sense, the didactic of 

mathematics has much insight to gain relying on anthropology and sociology. It is this junction that is put forward 

in ATD on which we have built on. 

 

Although we feel these preliminary conclusions to be of interest, as mentioned in the introduction, our research 

isn’t mature yet. We need to be able to position ourselves among the existing literature. It means the following 

questions should be addressed. 

 

• Have similar conclusions been drawn in other countries?  

• How do they articulate with ours if at all? 

• If not, what does it mean? 

• Does it invalidate our conclusions or does it put into light some peculiarities our high school’s ecology? 

 

Moreover we should look, as stated in our theoretical framework, at different levels of the scale and see if our 

hypothesis are consistent with other interpretations these other levels allow. This will be the subject of further 

investigations that will allow us to challenge the phenomenotechnicalty (Schneider, 2013) of our ongoing research. 

 

RECOMMENDATIONS 

 

Issuing recommendations at an early stage of a research is somewhat daring. Nevertheless, we feel this article has 

something to say about the relationship between teachers and culture. It is common in Belgium to find in initial 

teacher curricula several courses in epistemology, sociology, etc. that intend to broaden the future teachers’ culture. 

This broadening is thought, among other things, to allow them to develop a reflective practice that is considered 

as an important part of today’s best teaching practices (Beckers, 2009). We shall not discuss the relevance of 

reflective teaching but rather comment on the link between reflective teaching and culture. We feel that a 

background in epistemology, sociology, etc. does not guarantee that future teachers will engage in reflective 

teaching. One reason for this is that a course in say epistemology is more likely to constitute an initiation to 

different epistemologies. But between such a course and the daily routine of teachers there is a not so short distance. 

We can hardly expect teachers to fill in the gap. As this paper seems to demonstrate in a particular instance, flaws 

in their practice can result from high level constraints that are not easy to identify nor step aside because they form 

a context in which the whole education system is nested and they are moreover somewhat evanescent. We conclude 

from this, the relevance for a course in didactic, to train future teachers to use ATD and/or other didactic theories 

not as ideologies devised to “teach well” but as systemic and systematic tools designed to highlight the hypothesis 

underlying their teaching. 
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