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Continued Fractions and Pell’s Equation
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Necmettin Erbakan University

1.Introduction

The study of Diophantine equations is one of the most important topics in the history 
of number theory. Diophantine equation is an n − variable ( )2n ≥  polynomial equation 
( )1 2 3, , , , 0nf x x x x =  whose coefficients are integers. 

The studies related to Diophantine equations are based on three fundamental problems 
(Andreescu et al., 2010):

•	 The first one is whether the Diophantine equation is solvable.

•	 The second one if it is solvable, is the number of solutions to the Diophantine 
equation finite or infinite?

•	 The third problem is that if the Diophantine equation is solvable, determine all 
of its solutions.

The form 2 2 0ax bxy cy dx ey f+ + + + + =  where , , , , ,a b c d e f ∈  and ,x y∈  is 
called as quadratic Diophantine equation. Such an equation with integral coefficients 
is reduced in its main case to Pell-type equation. So, a Pell’s equation is a kind of 
Diophantine equation.

Pell’s equation has a long history. Many mathematicians have been fascinated by Pell’s 
equations and have done a lot of work on it. The first important development regarding 
the solution of Pell’s equations was in India. In AD 628, Brahmagupta explained how to 
use known solutions of Pell’s equation to generate new solutions. After that in AD 1150 
Bhaskaracharya gave a method for finding a minimal positive solution to Pell’s equation. 
Brahmagupta explains a method for generating new solutions from old ones and gives 
an algorithm. After the years Bhaskaracharya extended Brahmagupta’s work on Pell’s 
equation via repeated reductions. Bhaskaracharya showed his method by solving the 
equation 2 261 1.x y− =  In AD 1657, Fermat challenged his fellow mathematicians to 
solve the equation 2 261 1x y− = , and thus began the modern European history of the Pell 
equation. Brouncker gave a general method for solving Pell’s equation and solved the 
equation 2 2313 1x y− =  (Silverman, 2013). John Wallis described Brouncker’s method 
in his book entitled Opera Mathematica. Euler mistakenly thought that the method in 
Wallis’s book was created by John Pell and this name was given to the Pell’s equation by 
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Euler. Therefore, the quadratic Diophantine equation of the form 2 2 1x Dy− = , where 
D  is a positive non-square integer, unknowns x  and y  are positive integers, is called 
as Pell’s equation, following an erroneous attribution of Euler. Brouncker and Wallis 
explained a method of solution that is the same as the solution by continued fractions 
(Coppel, 2006).

Many great mathematicians of the seventeenth and eighteenth centuries have been 
fascinated by continued fractions and have done work on it. Appearing in many areas 
of mathematics, continued fractions are interesting and useful in other areas of number 
theory. For instance, continued fractions are “the best” approximations of real numbers. 
Continued fractions, which also provide a way to learn about the decimal approximations 
of rational numbers, also appear in many other areas. Additionally, continued fractions 
provide a way to analyze solutions to Pell’s equation 2 2 1x Dy− = . Since all integral 
solutions of Pell’s equation come from convergents to .D

2. Continued Fractions

Definition 2.1. (Olds, 1963) An expression of the following form
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is called as continued fraction where the 1 2 3 1 2 3, , ,  . . ., , , ,  . . .a a a b b b  are any real or 
complex numbers, and the number of terms is finite or infinite.

The purpose of the present section is to acquaint with the so-called regular continued 
fractions, that is, those of the form 
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usually with the assumption that all the elements 1 2 3, , ,  . . .a a a , are positive integers.

Definition 2.2. (Rosen, 1992) An expression of the form 
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is called as a finite continued fraction where 0 1 2, , ,  . . ., na a a a  are real numbers with 

1 2, ,  . . ., na a a  positive. A finite continued fraction is denoted by [ ]0 1 2; , ,  . . ., na a a a  
where the real numbers 1 2, ,  . . ., na a a  are called the partial quotients of the continued 
fraction. The continued fraction is called simple if the real numbers 0 1 2, , ,  . . ., na a a a  are 
all integers.

A finite continued fraction can also be written as 
[ ] [ ] [ ]0 1 2 0 0 1 2

1 2

1; , ,  . . ., ; , ,  . . .,
; ,  . . .,n n

n
a a a a a a a a a

a a a
 = + =    for 0.n >  

Example 2.3. Express [ ]2;1,3,1, 4  as a rational number.

[ ] 1 672;1,3,1,4 2 1 241 13 11
4

= + =
+

+
+

As can be seen, the value of any finite simple continued fraction is always a rational 
number and every rational number can be represented by a finite simple continued 
fraction (Rosen, 1992; Burton, 2010; Robbins, 1993).

Example 2.4. Express 67
29

 as a finite simple continued fraction.

By the Euclidean Algorithm, we have

				    67 2.29 9= +

				    29 3.9 2= +

				      9 4.2 1= +

				      2 2.1 0= + ,

it follows that

				    67 9 1 12 2 2 229 29 29 9 3
9

= + = + = +
+

				          1 12 21 13 3 19 2 4
2

= + = +
+ +

+

				          [ ]2;3,4,2= .

Since 2 1 1= + , it can be written
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67 12 129 3 14 11
1

= +
+

+
+

Therefore, it can also be denoted as [ ]2;3,4,1,1 .

This explains the following theorem.

Theorem 2.5. (Long, 1987) If 1na > , then [ ] [ ]0 1 2 0 1 2; , ,  . . ., ; , ,  . . ., 1,1n na a a a a a a a= − . 

Definition 2.6. (Rosen, 1992) Let [ ]0 1 2; , ,  . . ., nA a a a a=  where ia∀ ∈  with 

1 2, ,  . . ., na a a  positive. The continued fractions [ ]0 1 2; , ,  . . .,k kC a a a a= , where 
k∈ with 0 ,k n≤ ≤  is defined as the kth  convergent of the continued fraction 

[ ]0 1 2; , ,  . . ., nA a a a a=  and it is denoted by kC .  

Theorem 2.7. (Stein, 2008) If real numbers kp  and kq  are defined as follows:

2 0p− = ,     1 1p− = ,     0 0p a= ,     1 1 0 1p a a= + ,     …     21 −− += kkkk ppap      …,     

2 1q− = ,     1 0q− = ,     0 1q = ,     1 1q a= ,     …     21 −− += kkkk qqaq ,     …,     

then the kth convergent [ ]0 1 2; , ,  . . .,k kC a a a a=  is given by k
k

k

pC
q

=  for 0 k n≤ ≤ .

Theorem 2.8. (Burton, 2011) 

a.	 The convergents with even subscripts form a strictly increasing sequence; that is, 

0 2 4C C C< < < .

b.	  The convergents with odd subscripts form a strictly decreasing sequence; that is, 

1 3 5C C C> > > .

c.	 Every convergent with an odd subscript is greater than every convergent with an 
even subscript.

In other words, this theorem briefly states that 0 2 4 5 3 1nC C C C C C C< < < < < < < <  .

Theorem 2.9. (Long, 1987) Let [ ]0 1 2; , ,  . . ., na a a aα =  with 1na >  so that α  is the 
rational number n

n

p
q

. Then, for 1 i n≤ ≤ , we have that 

				    1

1

i i

i i

p p
q q

α α −

−
− < −

and also

1 1i i i iq p q pα α − −− < − .     
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Let’s show what has been given so far on an example.

Example 2.10. Express 170
39

 as a finite simple continued fraction and compute the 

convergents for this simple continued fraction. Also, show that its continued fraction 
satisfies Theorem 2.5., Theorem 2.8. and Theorem 2.9.

By the Euclidean Algorithm, we have

				    170 4.39 14= +

				     39 2.14 11= +

				     14 1.11 3= +

				     11 3.3 2= +

				      3 1.2 1= +

				      2 2.1 0= + ,

it follows that

				  
170 14 1 14 4 4 1139 39 39 14 2

14

= + = + = +
+

				            1 14 41 12 2 314 11 1
11

= + = +
+ +

+

				            1 14 41 12 21 11 1 211 3 3
3

= + = +
+ +

+ +
+

				            1 14 41 12 21 11 11 13 3 13 2 1
2

= + = +
+ +

+ +
+ +

+

				            [ ]4;2,1,3,1,2= .

Since 2 1 1= + , it can be written
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170 14 139 2 11 13 11 11
1

= +
+

+
+

+
+

Therefore, it can also be denoted as [ ]4;2,1,3,1,1,1 . This satisfies Theorem 2.5.

The various convergents are

[ ]0 4C = 			   0
0

0

4 4
1

pC
q

= = =

[ ]1 4;2C = 			   1
1

1

9 4,5
2

pC
q

= = =

[ ]2 4;2,1C = 			   2
2

2

13 4,3333333333
3

pC
q

= = ≈

[ ]3 4;2,1,3C = 			  3
3

3

48 4,3636363636
11

pC
q

= = ≈

[ ]4 4;2,1,3,1C = 		  4
4

4

61 4,3571428571
14

pC
q

= = ≈

[ ]5 4;2,1,3,1,2C = 		  5
5

5

170 4,358974359
39

pC
q

= = ≈ .

It is clear that 4 13 61 170 48 9
1 3 14 39 11 2
< < < < < . Thus, 0 5 32 4 1

0 2 4 5 3 1

p p pp p p
q q q q q q

< < < < < . 

Therefore, 0 2 4 5 3 1C C C C C C< < < < < . This satisfies Theorem 2.8.

Let us check that if Theorem 2.9 is satisfied.  

4 4
170 170 114 61 0,0256410256
39 39 39

q p− = − = ≈

3 3
170 170 211 48 0,0512820513
39 39 39

q p −
− = − = ≈

From this we easily obtain 4 4 3 3
170 170
39 39

q p q p− < − . It can be shown similarly for the 

others kp  and kq  ( )1 5k≤ ≤ .

Theorem 2.11. (Koshy, 2007) Let k
k

k

pC
q

=  be the kth  convergent of the simple continued 

fraction [ ]0 1 2; , ,  . . ., na a a a  where 1 k n≤ ≤ . Then, ( ) 1
1 1 1 k

k k k kp q q p −
− −− = −  is valid.  
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The Procedure of Continued Fraction 

The procedure of continued fraction can also be explained as follows.

Let x∈  and 

				    { } { }0x x x a x= + = +  

where x ∈     and { }0 1x≤ < .

If x∈ , then this is the end of the algorithm.

If x∈/  , i.e. { } 0x ≠ , then we write 
{ }1
1x
x

= . Therefore 

				  
1

1x x
x

= +     with 1 1x > .

If 1x ∈ , then this is the end of the algorithm.

If 1x ∈/  , then we write 
{ }2

1

1x
x

= . Therefore, 

				  
1

2

1
1x x

x
x

= +  
+  

  with 2 1x > .

Set 0a x=     and i ia x=     for 1i ≥ . 

				    0

1 1

2 2

1 1
1 1

1 1

x x a
x a

x a

= + = +  
+ +  

+ +  
 

Consequently, [ ]0 1 2; , ,  . . .x a a a= . The algorithm finishes after finitely many steps if 
and only if x  is rational.

Example 2.12. Let 24
7

x = . Then 33
7

x = +  i.e. 0 3a =  and { } 3
7

x = .

{ }1
1 7 12

3 3
x

x
= = = + , so 1 2a =  and { }2

1
3

x = .

{ }3
2

1 3
1

x
x

= = , so 2 3a =  and { }3 0x = .

Therefore, [ ]24 3;2,3
7

x = = . 

Definition 2.13. (Burton, 1992) An infinite continued fraction is an expression of the 
following form
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where 0, 1 2 3, , ,  . . .a a a a  are real numbers with 1 2, ,  . . ., na a a  positive and 0 0a ≥  and it is 
denoted by [ ]0 1 2; , ,  . . ., ,na a a a  . If the real numbers 0 1 2, , ,  . . ., na a a a  are all integers, 
then the continued fraction is called simple. 

Theorem 2.14. (Rosen, 1992) Let 0 1 2, , ,  . . .a a a  be an infinite sequence of integers with 

1 2, ,  . . .a a  positive, and let [ ]0 1 2; , ,  . . .,k kC a a a a= . Then, the convergents kC  tend to 
a limit α , i.e. lim kk

C α
→∞

= .  

Definition 2.15. (Stein, 2008) A periodic continued fraction is a continued fraction of the 
form  [ ]0 1 2; , ,  . . ., ,na a a a   such that n n ta a +=  for some fixed positive integer t  and all 
sufficiently large n . Such a minimal t  is called as the period of the continued fraction. 

If the continued fraction contains no initial non-periodic terms, then it is called purely 
periodic.

Theorem 2.16. (Koshy, 2007) Let 0xα =  be an irrational number. Define the sequence 
{ } 0k ka ∞

=  of integers ka  recursively as follows:

			   k ka x=    , 	 1
1

k
k k

x
x a+ =
−

where 0k ≥ . Then [ ]0 1 2; , ,  . . .a a aα = .

Continued fraction expansion can also be found in the above form if α  is an irrational 
number. Let’s show this on an example.

Example 2.17. Express 19α =  as an infinite simple continued fraction. 

0 0 19 4a x  = = =     , 	 1
0 0

1 1 19 4
319 4

x
x a

+
= = =

− −

1 1 2a x= =   ,			   2
1 1

1 1 19 2
519 4 2

3

x
x a

+
= = =

− +
−

2 2 1a x= =   ,			   3
2 2

1 1 19 3
219 2 1

5

x
x a

+
= = =

− +
−

3 3 3a x= =   ,			   4
3 3

1 1 19 3
519 3 3

2

x
x a

+
= = =

− +
−

	

4 4 1a x= =   ,			   5
4 4

1 1 19 2
319 3 1

5

x
x a

+
= = =

− +
−
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5 5 2a x= =   ,			  6
5 5

1 1 19 4
19 2 2

3

x
x a

= = = +
− +

−

6 6 8a x= =   ,			  7 1
6 6

1 1 19 4
319 4 8

x x
x a

+
= = = =

− + −

As it can be seen that 7 1x x= . So, the pattern continues. Thus,

[ ]19 4;2,1,3,1,2,8,2,1,3,1,2,8, 4;2,1,3,1, 2,8 = =   .

As can be seen, every irrational number can be represented by an infinite simple continued 
fraction (Koshy, 2007; Robbins, 1993).

Example 2.18. Express the purely periodic continued fraction 2;1α  =    in the form 
,a b d+ where ,a b∈  and d  is a square-free integer greater than 1.

				    12;1 2 11 12 11
2

  = + 
+

+
+

+

Since 2;1α  =   , it can be written

1 3 22 1 11

αα
α

α

+
= + =

++
. 

That is, 2 2 2 0α α− − = , so 1 3α = + . 

Every purely periodic continued fraction is an infinite continued fraction. As can be seen 
from the example, the value of an infinite continued fraction is an irrational number. This 
explains the following theorem.

Theorem 2.19. (Burton, 1992) The value of any infinite continued fraction is an irrational 
number.

Theorem 2.20. (Mollin, 2008) If k
k

k

pC
q

= , for k∈ , is the kth  convergent of an 

irrational number α , then the following holds

					     2
1k

k k

p
q q

α − < .  

  

For example, if 41 6;2,2,12 =   , it is obvious that 5
5

5

2049
320

pC
q

= = . So, 5 2
5

141 C
q

− < ,

where 5C  is the 5 th convergent in the infinite continued fraction representation of 41 .
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3. Pell’s Equation

In the literature, there are different methods for solving Pell’s equation such as the 
Lagrange-Matthews-Mollin algorithm, the cyclic method, Lagrange’s system of 
reductions, use of binary quadratic forms, etc. Here it will be explained how to solve 
Pell’s equation using continued fractions.

Definition 3.1. (Robbins, 1993) The quadratic Diophantine equation of the form 
2 2 ,x Dy N− =  where D  is a positive non-square integer and N  is a non-zero integer, 

unknowns x  and y  are positive integers, is called as generalized Pell’s equation. If 
1N = , i.e. 2 2 1x Dy− = , then the form is called as Pell’s equation. If 1N = − , then the 

equation 2 2 1x Dy− = −  is called as  associated Pell’s equation (negative Pell’s equation). 

The trivial solution of Pell equation is 1x = , 0y = . There is a minimal solution to 
2 2 1x Dy− = ±  in positive integers which is greater than 1 is called as the fundamental 

solution of this equation.

Theorem 3.2. (Burton, 2011) If ,p q  is a positive solution of 2 2 1x Dy− = , then p
q

 is a 
convergent of the continued fraction expansion of D . 

Theorem 3.3. (Rosen, 1992) Let ( )1 1,x y  be the fundamental solution of the equation 
2 2 1x Dy− = , where D  is a positive integer that is not a perfect square. Then, all positive 

solutions ( ),n nx y  are given by 

				    ( )1 1
n

n nx y D x y D+ = +

for 1, 2,3,n =  .

The next theorem will present several important tools for solving the Pell’s equation.

Theorem 3.4. (Robbins, 1993) Let D  be a positive non-square integer. Let t  be the 
length of the period of the continued fraction expansion of D . Then, Pell’s equation 

2 2 1x Dy− =  has infinitely many solutions, all are given as follows:

a.	 If t  is even, then 1n ntx p −= , 1n nty q −=  for 0,1,2,3,n = 

b.	 If t  is odd, then 2 1n ntx p −= , 2 1n nty q −=  for 0,1,2,3,n =  .

If the negative Pell equation 2 2 1x Dy− = −  is examined, the following holds:

c.	 If t  is even, then the equation 2 2 1x Dy− = −  has no solutions.

d.	 If t  is odd, then the equation 2 2 1x Dy− = −  has infinitely many solutions, all 
given by 1n ntx p −= , 1n nty q −= , where 1,3,5,n =  .       
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Theorem 3.5. (Andreescu & Andrica, 2015) Let 3p ≥  be a prime. The negative Pell’s 
equation 2 2 1x Dy− = −  is solvable in positive integers if and only if ( )1 mod 4p ≡ .

Example 3.6. Solve the Pell’s equation 2 263 1x y− = .

The solution depends on the continued fraction expansion of 63 .  

 0 0 63 7a x  = = =     , 	 1
0 0

1 1 63 7
1463 7

x
x a

+
= = =

− −

1 1 1a x= =   ,			   2
1 1

1 1 63 7
63 7 1
14

x
x a

= = = +
− +

−

2 2 14a x= =   ,		  3 1
2 2

1 1 63 7
1463 7 14

x x
x a

+
= = = =

− + −

As it can be seen that 3 1x x= . So, the pattern continues. Thus,

[ ]63 7;1,14,1,14,1,14, 7;1,14 = =    .

The period length of the continued fraction 63  is 2, that is, even. ( ) ( )1 1, 8,1p q =  i.e. 

fundamental solution of the Pell’s Equation 2 263 1x y− =  is ( ) ( )1 1, 8,1x y = .   

All positive integer solutions of the Pell’s Equation 2 263 1x y− =  are given by

( )8 63
n

n nx y D+ = +

 for 1, 2,3,n =  .

Example 3.7. Solve the Pell’s equation 2 298 1x y− = .

The solution depends on the continued fraction expansion of 98 .  

 0 0 98 9a x  = = =     , 	 1
0 0

1 1 98 9
1798 9

x
x a

+
= = =

− −

1 1 1a x= =   ,			   2
1 1

1 1 98 8
298 9 1

17

x
x a

+
= = =

− +
−

2 2 8a x= =   ,			  3
2 2

1 1 98 8
1798 8 8

2

x
x a

+
= = =

− +
−

3 3 1a x= =   ,			   4
3 3

1 1 98 9
98 8 1
17

x
x a

= = = +
− +

−

4 4 18a x= =   ,		  5 1
4 4

1 1 98 9
1798 9 18

x x
x a

+
= = = =

− + −
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As it can be seen that 5 1x x= . So, the pattern continues. Therefore,

[ ]98 9;1,8,1,18,1,8,1,18, 9;1,8,1,18 = =    .

The period length of the continued fraction 98  is 4t = , that is, even. ( ) ( )3 3, 99,10p q =  

i.e. fundamental solution of the Pell’s Equation 2 298 1x y− =  is ( ) ( )1 1, 99,10x y = .   

All positive integer solutions of the Pell’s Equation 2 298 1x y− =  are given by

( )99 10 98
n

n nx y D+ = +

 for 1, 2,3,n =  .

Let’s continue with the more general Pell’s equations. 

Application 3.8. Let a∈ . Solve the Pell’s equation ( )2 2 21 1x a y− + =  for 1a ≥ . 

Continued fractions crop up a way to analyze solutions to Pell’s equation. In this equation, 
the solution depends on the continued fraction expansion of 2 1a + . It can be seen that 
the continued fraction expansion of 2 1a +  is ;2a a    (Robbins, 1993, p. 225).

Let’s find the continued fraction expansion ourselves.   

				    ( )2 21 1a a a a+ = + + −

					      
2

1

1
a

a a
= +

+ +

					      
( )2

1

2 1
a

a a a
= +

+ + −
.

Therefore, 2 1a +  has continued fraction representation 2 1 ;2a a a + =   . So, 1t = . 

That is, the length of the period of the continued fraction expansion of 2 1a +  is odd.

 So ( )
2

1
1 1

1

2 1,
2

p ax y
q a

+
= =  is the fundamental solution to the Pell’s equation

 ( )2 2 21 1x a y− + = . Moreover, the positive solution set S  to Pell’s equation is as 
follows:

( ) ( ) ( )2 2 2 2

1

, : 1 2 1 2 1 .
k

k k k k
k

S x y x y a a a a
∞

=

 
= ∈ + + = + + + 
 



Application 3.9. Let a∈ . Solve the Pell’s equation ( )2 2 22 1x a y− + = . 
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Since all small values of ( )2 2 22x a y− +  arise from convergents, if ( )2 2 22 1x a y− + =  
is to have a solution it must arise from a convergent to 2 2a + . Therefore, it should be 
found a continued fraction representation of 2 2a + . It can be seen that the continued 

fraction expansion of 2 2a +  is ; , 2a a a    (Robbins, 1993, p. 225).

Let’s find the continued fraction expansion ourselves.

				    ( )2 22 2a a a a+ = + + −

					       
2

1

2
2

a
a a

= +
+ +

					       
2

1

2
2

a
a aa

= +
+ −

+

					       

2

1
1

2

a
a

a a

= +
+

+ +

					       

( )2

1
1

2 2

a
a

a a a

= +
+

+ + −

Therefore, the continued fraction expansion of 2 2a +  is ; , 2a a a   . So, the length of 

the period of the continued fraction expansion of 2 2a +  is 2t = . Then, the fundamental 

solution of the equation ( )2 2 22 1x a y− + =  is ( )
2

1
1 1

1

1, p ax y
q a

+
= = . Moreover, the 

positive solution set S  to Pell’s equation is

 ( ) ( ) ( )2 2 2 2

1

, : 2 1 2 .
k

k k k k
k

S x y x y a a a a
∞

=

 
= ∈ + + = + + + 
 



Application 3.10. Let a∈ . Solve the equations ( )2 2 29 3 1x a y− + =  and 

( )2 2 29 3 1.x a y− + = −  

Continued fractions provide a way to analyze solutions to the Pell’s equation 

( )2 2 29 3 1x a y− + = . In this equation, the solution depends on the continued fraction 

expansion of 29 3a + . It can be seen that the continued fraction expansion of 29 3a +  
is 3 ;2 ,6a a a    (Robbins, 1993, p. 226).

Let’s find the continued fraction expansion ourselves.   

				    ( )2 29 3 3 9 3 3a a a a+ = + + −
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2

13
9 3 3

3

a
a a

= +
+ +

					        
2

13
9 3 32

3

a
a aa

= +
+ −

+

					        

2

13 12
9 3 3

a
a

a a

= +
+

+ +

					       

( )2

13 12
6 9 3 3

a
a

a a a

= +
+

+ + −

.

Therefore, 29 3 3 ;2 ,6a a a a + =   . So, 2t = . That is, the length of the period of the 

continued fraction expansion of 29 3a +  is even. So ( )
2

1
1 1

1

6 1,
2

p ax y
q a

+
= =  is the 

fundamental solution to the Pell’s equation ( )2 2 29 3 1x a y− + = . Moreover, the positive 
solution set S  to Pell’s equation is as follows:

( ) ( ) ( )2 2 2 2

1

, : 9 3 6 1 2 9 3 .
k

k k k k
k

S x y x y a a a a
∞

=

 
= ∈ + + = + + + 
 



The length of the period of the continued fraction expansion of 29 3a +  is even. 
Therefore, the equation ( )2 2 29 3 1x a y− + = −  has no solutions. 

Solutions of different Pell’s equations can be found in the literature. For example, Peker 
and Senay (2015), found continued fraction expansion of D  when 2 2D a a= +  where 
a  is positive integer. They solved the Pell’s equation ( )2 2 22x a a y N− + =  when 

{ }1, 4N ∈ ± ±  and they formulated n th solution via the generalized Fibonacci and Lucas 
sequences. Keskin and Güney Duman (2019), considered continued fraction expansion 
of D  when 2 4D k= ±  and 2 1D k= ± . They solved the Pell’s equation 2 2x Dy N− =  
when { }1, 4N ∈ ± ± . Raza and Malik (2018) extended all the results of the various papers 
about the Pell’s equation 2 2x Dy N− =  when { }1, 4N ∈ ± ± . 

4. Conclusion

It has been presented a brief introduction to the theory of continued fractions. Continued 
fraction types are mentioned. Continued fractions have been introduced and have been 
applied these properties to solve Pell’s equation. The Continued Fraction Algorithm is 
explained. It is stated that the continued fraction algorithm finishes after finitely many 
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steps if and only if x is rational. 

It was mentioned that how to determine rational and irrational numbers using continued 
fraction representations. Every nonzero rational number can be represented by a 
finite simple continued fraction and the value of any finite simple continued fraction 
[ ]0 1 2; , ,  . . ., na a a a  is always a rational number. Every irrational number can be 
represented by an infinite simple continued fraction and the value of any infinite simple 
continued fraction [ ]0 1 2; , ,  . . ., ,na a a a   represents an irrational number.  

The quadratic Diophantine equation of the form 2 2 1x Dy− = , where D  is a positive 
integer which is not a perfect square, unknowns x  and y  are positive integers, is called 
Pell’s equation.  In the literature, there are different methods for solving Pell’s equation. 
Here, it was explained how to solve Pell’s equation using continued fractions. The 
solution depends on the continued fraction expansion of D . The fundamental solution 
of Pell’s equation is found by using convergents of D . All solutions of Pell’s equation 
can be reached using the fundamental solution. The complete set of solutions to Pell’s 
equation is the infinite cyclic group generated by the fundamental solution.

Finally, applications have been made on various Pell’s equations by determining 
continued fractions for square roots of positive integers initially and after that applying 
their results to solve Pell’s equation.
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