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Introduction

The goal of many quantitative education studies is to produce valid and replicable 
findings that add to our knowledge and understanding in ways that improve subjects’ 
outcomes, for example, identifying the most effective way to teach number ratios 
(e.g., 3

7
) to increase student learning in middle school mathematics classes. All 

methodological components of a study are important, but we focus on sampling, 
research design, and instrumentation because of their central role in the validity and 
replicability of study findings (internal and external validity), because recommended 
standards for these components do not appear to have received the attention they 
deserve, and because researchers may find these particularly challenging. In addition, 
the data analysis component is a broad field that requires many articles to cover the 
recommended standards.

In planning a study, researchers can turn to several resources offering guidance in the 
form of recommended methodological standards such as the Social Science Research 
website (http://www.socialresearchmethods.net/kb/), the American Psychological 
Association (APA) Publications and Communications Board Working Group on Journal 
Article Reporting Standards (2008), and What Works Clearinghouse [WWC] (2017). 
Research methodology texts (e.g., Pedhazur & Schmelkin, 1991), as well as summaries 
of research methodologies (U.S. Department of Education, 2013; Ellis & Levy, 2009, 
2010), also offer useful resources. These resources provide information for capitalizing 
on these standards in planning and executing a study that enhances the likelihood of 
valid and replicable study-based inferences. However, these standards presuppose a 
level of expertise and experience that may not be present among novice researchers 
such as new faculty, individuals beginning non-faculty roles such as a working in a 
university-affiliated research center or a government-funded education center, faculty 
transitioning to more research-oriented work, and students conducting their own 
research.

The goal of this paper is to encourage novice researchers in the educational sciences to 
capitalize on methodological standards and to respond to methodological challenges that 
can undermine these standards in ways that help preserve the validity and replicability 
of study-based inferences. We begin by reviewing recommended methodological 
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standards for sampling, research design, and instrumentation and provide examples of 
common methodological challenges and advice on how to respond. We also review a 
sample of quantitative studies to assess the extent to which the standards have been 
employed.

Review of Methodological Standards

We assume a study’s rationale, literature review, and research questions appropriately 
inform the quantitative methodology, and that ethical guidelines like those endorsed by 
the American Psychological Association (see https://www.apa.org/ethics/code/)) have 
been observed.

Sampling

Sampling focuses on the way subjects (e.g., consumers, households, students) are 
obtained for inclusion in a sample. How subjects were sampled speaks directly to the 
generalizability of study findings, which depends on specifying a population to generalize 
study findings to. Sampling can also involve study conditions, settings, instruments, 
etc. (Shadish, Cook, & Campbell, 2002), but we focus on subjects such as students 
and schools. By definition, a population is a collection of subjects that cannot usually 
be accessed which we wish to generalize study findings to, for example, all seventh 
grade mathematics students in the upper Midwest of the U.S. in the 2018-2019 school 
year. A sample is a chunk of a population that is used to generalize to a population of 
interest. The importance of generalizing study findings cannot be over-emphasized: A 
fundamental goal of much quantitative research is to identify interventions or conditions 
that improve outcomes like mathematics achievement for large numbers of subjects. 
The extent to which study findings can be accurately generalized to a population is often 
referred to as external validity (Campbell & Stanley, 1963), i.e., how externally valid are 
study findings? The way a sample was obtained speaks directly to external validity.

Types of Sampling Mechanisms

Two basic sampling mechanisms are available: probability-based (random) sampling 
and non-probability (non-random) sampling. The former is the recommended standard 
(WWC, 2017) because it supports strong external validity whereas the latter typically 
does not. 

In probability-based sampling, a population is specified, a sampling frame consisting of 
a list of every subject in the population is constructed, each subject in the population 
is assigned a unique identifying number (id), and a random process is used to generate 
a sample of N numbers.  The latter usually involves a random numbers program in 
computer software like SPSS (IBM Corp., 2011) or Stata (Stata Corp, 2015). In the final 
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step, N subjects with ids corresponding to the random numbers produced by the 
software are selected for the sample. This process ensures the probability of sampling 
each subject in a population is known (i.e., 

pop

1
N

 assuming a large population and a
comparatively small sample, popN  = number of subjects in the population). The logic 
underlying generalizability is simple: Because each subject has the same opportunity 
to be sampled, characteristics of a sample (e.g., gender, socio-economic status or SES, 
mathematics achievement) should mimic those in a population and hence sample 
results should be  generalizable to the population.

Common probability-based sampling mechanisms include simple random sampling, 
stratified random sampling, and cluster (two-stage) sampling (Lohr, 2010). Suppose a 
researcher wishes to generalize study findings of the impact of a new mathematics 
curriculum for teaching number ratios to a population of seventh grade students in 
mathematics classes in the upper Midwest of the U.S. in the 2018-2019 school year. If 

popN = 20,000 and probability-based sampling is used, a unique id is assigned to each 
student in the population via the sampling frame that might range from 1 to 20,000. To 
obtain a sample of, for example, N = 1,200 a computer program could be used to produce 
1,200 random numbers between 1 and 20,000 to identify N students to be sampled. 
The size of the sample is often a function of statistical power in the data analysis and 
the choice of N = 1,200 in this example is arbitrary. A simple random sample of size N 
consists of N subjects selected from the population such that every set of N subjects has 
the same probability of being sampled.

Stratified random sampling involves carving a population into strata such as those based 
on SES (e.g., high, medium, low) with known percentages of subjects in each stratum 
(e.g., 20%, 60%, 20%), and then using simple random sampling to obtain the desired 
number of subjects from each stratum. Stratified random sampling is used when it 
is important that the composition of the population (e.g., high/medium/low SES) be 
represented in the sample, which is not assured if simple random sampling is used. In 
cluster (two-stage) random sampling a population of organizational units (clusters) such 
as schools is specified, J clusters are sampled at random (stage 1) and in the typical case 
all subjects within a cluster are sampled (stage 2).

Despite the strong external validity associated with probability-based sampling, it 
appears to be uncommon in most educational studies, almost certainly because of the 
resources needed for probability-based sampling. For example, surveys of published 
educational studies provide evidence of high rates of non-probability-based sampling, 
such as Dedrick et al. (2009) and Fath (2014) who reported that 73% of 99 surveyed 
studies and 93% of 58 surveyed studies used non-probability-based sampling. 
Probability-based sampling is typically used in large studies such as the U.S.-based 
Early Longitudinal Childhood Studies (ELCS), or international studies such as Trends 



Research Highlights in Education and Science 2019

102

in International Mathematics and Science Study (TIMSS, 2015) or the Program for 
International Student Assessment (PISA, 2017). 

Practical constraints associated with probability-based sampling often result in studies 
using non-probability-based sampling involving regional or locally-obtained samples. 
For example, it may not be possible to generate a sampling frame because the number 
of subjects in a population is unknown, meaning the probability of sampling each subject 
in a population is unknown. The most common form of non-probability-based sampling 
occurs when a sample is obtained because it is convenient, which often takes the form 
of sampling all available subjects locally (e.g., all students in an introductory psychology 
class in a university) (Battalgia, 2008). Accurately generalizing study findings based on 
a convenience sample is challenging because of uncertainty about the population the 
sample represents, leading to weak external validity.

Still, it is important to try to generalize study findings from non-probability-based 
sampling. An appropriate strategy is for a researcher to provide empirical evidence the 
convenience sample is similar to a population of interest on selected indicators. This 
advice is consistent with the report of Wilkinson and the APA Task Force on Statistical 
Inference (1999):

“Using a convenience sample does not automatically disqualify a study from publication, 
but it harms your objectivity to try to conceal this by implying that you used a random 
sample. Sometimes the case for the representativeness of a convenience sample can be 
strengthened by explicit comparison of sample characteristics with those of a defined 
population across a wide range of variables.” (p. 595)

Suppose a convenience sample of N = 300 students was obtained from three schools 
in an upper Midwest state but the study goal was to generalize to all seventh grade 
mathematics students in the state. Providing information about key indicators for the 
sample and the population of interest can strengthen the case for generalizability. 
For example, evidence that the percentage of urban/suburban/rural students, Black, 
Hispanic, and White students, and students in poverty in the sample is similar to that in 
the state provides indirect evidence supporting generalizability; similarity of educational 
indicators for the state and the sampled schools such as average pupil/teacher ratios, 
per pupil spending, and percentage of students who attend a post-secondary institution 
provides additional evidence of generalizability (In the U.S. the latter information is 
available through the Digest of Education Statistics and the Bureau of the Census).

Two other data characteristics can provide important challenges to valid generalizations.  
One is attrition (missing data) which occurs for a variety of reasons. For example, once a 
sample is identified students may initially participate in a study but then move, parents 
may refuse to allow their children to participate in a study or to complete a study, or 
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schools that initially agreed to participate subsequently decide not to. These kinds of 
sampling difficulties lead to missing data and can seriously undermine the generalizable 
of study findings because sampled students, schools, etc., with missing data may differ 
from those who provided complete data in ways that impact inferences.

A second challenge to valid generalizations is lack of independence of subjects and 
hence their data, which can seriously distort inferences particularly from data analyses. 
Both probability-based and non-probability-based sampling can produce dependency 
but the latter is typically more likely, for example, all students in a school are sampled 
(convenience sample) which may include siblings, students studying together in a 
class, etc. Researchers should carefully examine the sampling process for evidence of 
dependency, which, if present, can have a devastating impact on inferences.

Examples of common methodological challenges 

As suggested above, a common methodological challenge in sampling is attrition, which 
can undermine generalizability. We provide a brief example of this methodological 
challenge for each sampling method and advice for novice researchers.

In simple random sampling, suppose a researcher receives funding to examine the 
impact of a new online method for teaching English to non-native English speakers in 
the seventh grade as measured by a test of written English. The research question is: 
Does online teaching of English to seventh grade non-native speakers improve their 
written English? The population of interest is all seventh grade non-native English 
speakers in the upper Midwest of the U.S. who have indicated that Somali, Hmong, 
Spanish, or French was their native language. The researcher decides a simple random 
sample of N = 600 non-native English speakers is needed. Schools and students already 
using the online method for teaching English are excluded.

Suppose 20,000 eligible students define the sampling frame based on information 
provided by the U.S. Department of Education. Parental consent is required for a 
student to participate in the study, and the researcher anticipates 50% of the students 
will not be eligible to participate because their parents will not consent based on 
previously reported rates in the literature (which represents attrition). After assigning 
each student in the population a unique 5-digit id ranging from 00001 to 20,000 the 
random numbers option in SPSS (IBM Corp., 2011) is used to generate a sample of 
1,200 5-digit values between 00001 and 20,000 and those students are selected to be 
in the sample. A letter is then sent to the parents of the 1,200 students asking them to 
allow their student to participate in the study--if 50% consent the resulting sample will 
be (.50)(1,200) = 600. The consent rate turns out to be 55% meaning (1,200)(.55) = 660 
students are eligible. To help ensure generalizability of study findings to the desired 
population it is important to provide evidence the final sample of 660 students is similar 
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to the initial sample of 1,200 students. This evidence could take the form of comparing 
information for students in the population and sample (e.g., socio-economic status, 
race, gender, test scores), and information about the schools in the population and 
sample (e.g., percentage of Black, Hispanic, and White students, school poverty rate).

In stratified random sampling, using the information provided in the above example, the 
researcher decides that the proportion of native speakers of Somali, Hmong, Spanish, 
and French in the population of non-native English speakers should be represented 
in the sample and chooses stratified random sampling. Suppose the proportions of 
Somali, Hmong, Spanish, and French speakers in the upper Midwest are known to be 
20%, 20%, 55%, and 5%, respectively. The four strata in this example consist of (20,000)
(.20) = 4,000, (20,000)(.20) = 4,000, (20,000)(.55) = 11,000, and (20,000)(.05) = 1,000 
students. Assuming a consent rate of 55% (N = 660), applying simple random sampling 
within strata involves sampling (660)(.20) = 132 Somali and 132 Hmong native speakers, 
(660)(.55) = 363 native Spanish speakers, and (660)(.05) = 33 native French speakers (N 
= 660). To help ensure generalizability of study findings to the desired population it is 
important to provide evidence the final sample of 660 students is similar to the initial 
sample of 1,200 students. Using stratified random sampling enables the researcher to 
appropriately generalize study findings based on N = 660 to students in the four strata.

In cluster (two-stage) random sampling, using the information provided in the first 
example, a researcher is interested in investigating characteristics of teachers and their 
likely impact on the written English of non-native speakers in the upper Midwest. The 
researcher decides a random sample of J = 40 teachers (clusters) is needed and expects 
30% of sampled teachers to decline to participate in the study (which represents 
attrition). Suppose popJ = 700 teachers and popN = 20,000 eligible non-native speakers 
of English. A sampling frame of the 700 eligible teachers is generated in which each 
teacher has a unique 3-digit id. The random numbers option in SPSS (IBM Corp., 2011) 
is used to generate a sample of J = 60 teachers (to take the expected attrition into 
account) (stage 1) and their students (N = 1,800 assuming 30 students per class, stage 2) 
are selected to be in the sample. Assuming the actual consent rate is 70% produces 60 - 
(1-.70)(60) = 42 teachers and (42)(30) = 1,260 students (The latter will shrink if student 
consent rates are less than 100%).  Empirical evidence that the sample of 42 teachers 
and their students are similar to the original sample of J = 60 and N = 1,800 helps to 
ensure generalizability of study findings to the desired populations.

In convenience sampling, using the information provided in the first example, the 

researcher decides to use a convenience sample of N = 1,200 non-native English 

speakers in the seventh grade. The researcher goes to three nearby schools who have 

agreed to participate in the study and, assuming the consent rate is 55%, produces 
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a sample of 660 students. Demonstrating this sample is similar to the population of 

seventh grade students in the upper Midwest is critical to generalizability arguments.

Practical advice

We offer five pieces of advice on sampling to novice researchers assuming a quantitative 
study in education is to be performed:

1. 	The importance of external validity argues for probability-based sampling but
this sampling method is uncommon. Consider using a large publicly available
dataset like Early Longitudinal Childhood Studies in the U.S. and TIMSS or PISA
internationally because these studies employ probability-based sampling.
Datasets of this kind may also contain collateral information that provides
evidence the resulting sample is similar to the population of interest on key
indicators such as poverty rates.

2. The sampling process should be carefully examined to help ensure subjects
are independent because dependency in the data subjects provide (e.g.,
mathematics test scores) can have a devastating effect on inferences from data
analyses that assume independence such as multiple regression. Evidence of
dependency should prompt actions to help ensure independence of subjects,
for example, if siblings are identified randomly select one sibling for inclusion in
the sample and omit the remaining sibling(s).

3. If non-probability-based sampling is used, it is particularly important to provide
empirical evidence supporting generalizability, such as the similarity of student
demographics in the sample and the population of interest, as well as similarity
of important school-based indicators like per pupil spending or poverty rates.
Similar summaries support at least some generalizability, but if there is little
similarity between the empirical evidence for a sample and the population of
interest external validity will be severely compromised and the value of the
study undermined. Researchers should plan on collecting relevant information
to make these empirical comparisons.

4. In practice, more than N subjects would often be sampled because the final
N will likely be smaller due to attrition. In all instances, provide evidence that
subjects who attrited are similar to those who participated in a study.

5. It is important to report inclusion and exclusion criteria of the sampling
procedure. For example, restrictions on age, race, or socio-economic status
(SES) of the sample or the use of strata should be made clear (Appelbaum et
al., 2018). This information will help clarify the population which study results
ideally can be generalized to.
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Research Design

Research design represents the

“... glue that holds the research project together. A design is used to structure the 
research, to show how all of the major parts of the research project—the samples 
or groups, measures, treatments or programs, and methods of assignment—work 
together to try to address the central research questions.” (Trochim & Land, 1982, 
p. 1)

A study’s research design is important because it largely dictates the strength of causal 
inferences that can be drawn from study findings. Studies that credibly draw strong causal 
inferences answer the question that permeates quantitative research: Does A cause B 
and if so under what conditions and for whom? Harwell (2011) encouraged researchers 
to select a research design supporting strong causal inferences, and the Council for 
Exceptional Children (2014) similarly stated that “causality could be reasonably inferred 
from research designs when they are well designed and conducted” (p. 1). Summarizing 
the strengths and weaknesses of different designs based on methodological standards 
and pointing novice researchers towards stronger designs should promote stronger 
inferences. Note that providing evidence of a causal effect requires a design with at 
least two conditions (typically groups), often labeled treatment and control, which 
constitute an independent variable.

A critical feature of causal inferences is that estimates of a treatment effect are unbiased, 
for example, the difference between the outcome (dependent variable) means of 
treatment and control groups represents, beyond random variation, the causal effects 
of an independent variable. Put another way, strong causal inferences imply there are no 
serious alternative explanations for the observed effect of an independent variable on 
an outcome, implying strong internal validity (Shadish, Cook, & Campbell, 2002). A study 
with weak internal validity implies weak external validity even if probabilistic sampling 
was used because internally invalid results cannot typically be validly generalized.

Types of Research Designs

What Works Clearinghouse (2017) describes three categories of group-based research 
designs to choose among: Randomized control trials (RCTs), quasi-experimental designs 
(QEDs), and regression discontinuity designs (RDDs).

Randomization is often characterized as the gold standard of research design because 
its produces probabilistically unbiased treatment effect estimates (i.e., if the study was 
repeated many times, the average treatment effect will be unbiased), supporting strong 
causal inferences. This occurs because randomization ensures (probabilistically) that 
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subjects in the treatment and control groups are equal in observable and non-observable 
characteristics at the study onset (e.g., SES, gender, mathematics achievement), and 
consequently differences between groups after the treatment has been applied and its 
effects measured are attributed to the treatment and not other (confounding) variables 
(e.g., SES, gender). Traditionally, randomization is described as assigning N subjects at 
random to a treatment or control group using a random process (there can be multiple 
treatment groups), such as a coin flip or generating N random binary numbers using 
a computer program such that subjects receiving a 1 are assigned to treatment and 
those receiving a 0 to control. Thus, the probability of a subject being assigned to the 
treatment or control group is .50.

By definition, a control condition implies the treatment under study is not present and 
a true control group is one in which subjects receive no treatment of any kind related 
to the study. For example, if an RCT was used to study the effects of different doses of 
caffeine (e.g., 0 milligrams, 250mg, 500mg, 1000mg) on cognitive functioning the 0mg 
condition represents a true control group because these subjects receive no caffeine. 
Evidence of a difference in treatment-control outcome means would (beyond random 
variation) be attributed to the causal effect of caffeine. However, control conditions 
often represent “business as usual” in that subjects receive the current treatment or 
practice. For example, seventh grade students in a control group continue to use the 
current mathematics curriculum in a school whereas those in a treatment group use 
a new curriculum, or nurses in a control group in a hospital interact with patients in 
traditional (“business as usual”) ways (about three minutes per interaction), whereas 
those in a treatment group limit their interactions with patients to about one minute. 
Thus “business-as-usual” resembles a treatment and a difference between treatment 
and control means under random assignment is likely due to the treatment, but the 
possibility remains the business-as-usual curriculum strengthened or weakened the 
treatment-control mean difference.

Despite the critical advantage of unbiased treatment effects, practical and policy 
constraints on assigning subjects to treatment or control groups often make RCTs 
impractical. For example, students assigned at random to a treatment group may need 
to be pulled out of class to participate in a study which a teacher or parent may not 
allow, asked to remain after school which schools or parents may balk at, or students 
randomly assigned to a control group are subsequently moved to the treatment group 
at the insistence of a parent. A popular version of random assignment that responds 
to many practical and policy constraints of traditional RCTs involves assigning higher 
level units (clusters) such as schools at random to treatment or control conditions, and 
are known as randomized cluster designs. The growth of hierarchical data analyses 
(Raudenbush & Bryk, 2002) has played a key role in the popularity of randomized cluster 
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designs (Kleinman, 2017). Hierarchical (multilevel) analyses analyze data obtained from 
hierarchical structures in which lower level units, such as students, are clustered within 
higher level units (clusters), such as schools. Hierarchical data in these analyses are the 
result of two-stage (cluster) sampling.

For example, suppose the impact of a new curriculum for teaching number ratios to 
seventh grade students is studied by randomly assigning J = 42 schools to either a 
treatment condition in which teachers in a school use the new curriculum (treatment), 
or a control condition in which teachers use the existing (business-as-usual) curriculum. 
All students complete a test of number ratios at the conclusion of the study which 
serves as the outcome variable. The fact that all students in a school are in the 
treatment or control condition is likely to make random assignment more acceptable 
while still producing unbiased estimates of the treatment effect. Appelbaum et al. 
(2018) encouraged researchers to describe the units of randomization as well as the 
procedures used to generate the random assignment sequence, for example, assigning 
classrooms using randomly generated 0s and 1s.

Practical or ethical constraints on random assignment often leads researchers to 
employ QEDs. Quasi–experimental designs are used to compare pre-existing groups 
which define the independent or “treatment” variable. In some cases, the pre-existing 
conditions cannot be randomly assigned such as SES status (high, medium, low) or 
gender, whereas in other cases an outcome for subjects already receiving a treatment, 
such as mathematics achievement scores for students participating in an existing 
mathematics curriculum, are compared against those of students participating in a new 
curriculum. The problem with QEDs is that the lack of random assignment means group 
differences on an outcome may be due to a treatment effect, pre-existing differences 
between treatment and control groups that affect the outcome (selection bias), or both. 
Put another way, the probability a subject is assigned to a treatment or control group 
is not .50 meaning groups are not probabilistically equal and the likelihood of biased 
estimates of a treatment effect may be high. 

For example, treatment schools (teach a new curriculum) may have higher SES than 
control schools (use an existing curriculum), which leads to the former having higher 
outcome means because higher SES is usually associated with better mathematics 
performance even if the new curriculum has no effect. The result is that causal inferences 
from QEDs are typically much weaker than those associated with RCTs unless the impact 
of selection bias is controlled. To produce the strongest possible causal inferences with 
QEDs, methodological standards recommend controlling for selection bias by adding 
predictors that treatment and control conditions may differ on such as SES in the data 
analysis, or employing matching procedures which are typically based on propensity 
scores (Schneider, Carnoy, Kilpatrick, Schmidt, & Shavelson, 2007).
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Regression discontinuity designs (RDDs) are increasingly used to assess the impact of 
treatment and control conditions when RCTs are not feasible. The basic RDD is a pretest-
posttest two group (treatment, control) design. In a RDD, a variable which is typically 
a pretest is used to create a cutoff with cases with scores below and above the cutoff 
assigned to treatment and control groups (or vice versa). The groups are then compared 
on the change (discontinuity) in the pretest-posttest relationship at the cutoff (posttest 
is the outcome variable). The logic of RD is based on the crucial role of pretests in taking 
subject differences into account (Steiner, Cook, Shadish, & Clark, 2010), in that subjects 
with similar pretest scores can often be treated as approximately equal on background 
variables such as SES, enhancing causal inferences (Bloom, 2010).

For example, Jitendra, Harwell, Lm, Karl, and Slater (2018) used a RDD to examine the 
impact of an intervention designed to improve the mathematical problem-solving skills 
of students categorized as being at risk for having significant mathematical difficulties. 
A pretest measuring these skills (also referred to as the ‘forcing’ or ‘running’ variable) 
was used to categorize students as at risk for significant mathematical difficulties using 
a cutoff score of 9 which corresponded to the 35th percentile. Students with scores 
equal to or below 9 were at risk for significant mathematics difficulties and those above 
the cutoff had a modest risk of mathematical difficulties. In Jitendra et al. (2018) all 
students received the intervention because the research question was whether the 
intervention was more effective for students at risk of having significant mathematical 
difficulties, i.e., the independent variable was whether a student had a high or modest 
risk for significant mathematical difficulties; in other RDD applications an intervention 
would only be administered to students with pretest scores below (or above) the cutoff 
(e.g., Robinson, 2010).

Subjects can also be assigned to treatment and control conditions in RDDs based on 
collateral information. Consider a study assessing the impact of an intervention designed 
to reduce the number of student school suspensions for misbehavior. A school policy 
might be used to generate a cutoff, such as a policy in which students who are tardy 
five or more times are automatically suspended. Students who have been tardy five or 
more times are assigned to the treatment group and those tardy one to four times to 
the control group.

There are two types of RDDs: sharp RDD and fuzzy RDD. The former means the 
probability of being assigned to treatment changes from 0 to 1 (or 1 to 0) at the cutoff. 
A fuzzy RDD arises when the probability of being assigned to treatment changes from 
0 to a value somewhat less than 1 (or a value somewhat greater than 0 to 1) at the 
cutoff.  An example of a fuzzy RDD is when a researcher decides to assign subjects to 
treatment who were close to but slightly above the cutoff. Sharp RDDs are preferred 
because inferences about the treatment effect are clearer and analyses are simpler. The 
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assumptions of RDDs needed to support causal inferences should be checked including 
an outcome variable that should be measured in the same manner for both treatment 
and control groups, student scores on the cutoff variable were not manipulated, and 
the relationship between the cutoff variable (e.g., pretest) and outcome variable 
(e.g., posttest) is linear; otherwise the analysis must include predictors capturing the 
nonlinearity (Smith, Levesque, Kaufman, & Strumpf, 2017, pp. 941-942).

Despite the absence of random assignment to treatment and control groups properly 
constructed RDDs support strong causal inferences. As noted above, it is often reasonable 
to assume subjects at the cutoff are quite similar in ways related to their performance on 
the posttest. Hence, in Jitendra et al. (2018) comparing the posttest scores of students 
scoring 9 on the pretest and students scoring 10 should produce an unbiased (or almost 
unbiased) estimate of the difference between those categorized as having a high risk of 
significant mathematics difficulties and those with a modest risk because students with 
similar pretest scores are likely to be similar on many other characteristics related to 
performance on the outcome variable. A small mean difference on the posttest implies 
the intervention is equally effective for students categorized as having a high versus a 
modest risk of significant mathematics difficulties, and a non-negligible posttest mean 
difference that the intervention had a differential effect on the two groups of students. 
Similarly, comparing the posttest scores of students with pretest scores of 8 or 9 against 
those of students with pretest scores of 10 or 11 should also produce unbiased or nearly 
unbiased estimates of the intervention effect, and so on.

It is important to mention correlational designs (CDs) which are common in educational 
research, for example, TIMSS (2015) and PISA (2017) data were obtained from a CD. 
CDs are non-experimental designs and are not part of the WWC (2017) standards 
because of their inability to support causal inferences. The defining characteristic of 
a CD is that a single group of subjects is measured on two or more variables whose 
relationship is examined, which is consistent with Ellis and Levy’s (2009) and Creswell 
(2012) description of these designs as determining the presence and degree of the 
relationship between variables. The absence of treatment and control conditions 
means causal inferences for data obtained from such designs are extremely difficult to 
justify. The Council for Exceptional Children (2014) stated “identifying evidence-based 
practices involves making causal determinations, and causality cannot be reasonably 
inferred from correlational designs (p. 2)”.

Examples of Common Methodological Challenges 

Attrition is a common challenge that can cause or aggravate selection bias, which is the 
most severe methodological challenge in research design because it can undermine 
causal inferences. We provide a brief example of a methodological challenge for each 
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research design and general advice for novice researchers.

In RCTs, to assess the impact of a year-long online method for teaching English to 
non-native English speakers in the seventh grade in the upper Midwest in the U.S., a 
researcher employs a RCT design in which each of N = 660 sampled students will be 
assigned at random to a treatment group in which students are given access to the 
online method of learning English, or a control group in which students are not given 
access to the online method (n = 330 per group). The outcome variable is a test of 
written English administered at the end of one-year. To assign students at random the 
SPSS (IBM Corp., 2011) computer program is used to generate N = 660 binary numbers 
(0, 1) such that 330 are 0s and 330 are 1s; students with a 1 are assigned to the treatment 
condition and those with a 0 to the control condition. An important challenge in RCTs is 
ensuring that whatever attrition exists is similar in treatment and control groups (WWC, 
2017). If 5% of treatment students and 5% of control students are lost (missing data) 
then estimates of an intervention effect can often still be treated as unbiased (or almost 
unbiased); if 20% of treatment students and 5% of control students are lost estimates 
of an intervention effect are more likely to be biased.

In QEDs, using the same information provided in the previous example, a researcher 
turns to schools already applying the new online method for teaching English to non-
native speakers of English and defines n = 330 students in these schools as representing 
the treatment group.  Another 330 students were obtained from schools not using 
the online method and represent the control group. The most severe methodological 
challenge is selection bias meaning the treatment and control groups differ on the 
outcome at the study onset due to variables that confound (bias) comparisons. For 
example, the treatment group may have a higher (or lower) percentage of students 
in poverty, more (or less) access to high quality internet service, or stronger (or 
weaker) English teaching all of which affect the outcome. Collecting data on potentially 
confounding variables that can bias treatment and control comparisons is critical for 
controlling their effects (e.g., by including these variables as predictors in data analyses 
or employing matching procedures based on propensity scores).

In RDDs, using the information provided above, the researcher decides to utilize a RDD 
in the study of an online method to teach English to non-native English speakers. A 
test of written English administered at the beginning of the school year to non-native 
English speaking seventh grade students serves as the forcing variable, i.e., students 
scoring below a specified value, such as the score corresponding to the 35th percentile, 
are assigned to the treatment group (given access to the online method for learning 
English) or are assigned to the control group (no access to the online method for 
learning English). The test of written English administered at the end of one year serves 
as the posttest.
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One important methodological challenge in RDDs is attrition which should be tracked in 
the treatment and control groups. Another challenge is choosing a forcing variable and 
associated cutoff that provides results that speak to the research question motivating 
the study. For example, Jitendra et al. (2018) chose a pretest as the forcing variable and 
a score corresponding to the 35th percentile as the cutoff based on considerable prior 
research results for identifying students at risk of significant mathematical difficulties. 
A different cutoff choice by these authors, for example, a pretest score corresponding 
to the 50th percentile, would still be expected to produce an unbiased (or almost 
unbiased) estimate of a treatment effect but the choice of a non-literature-based cutoff 
would likely undermine the usefulness of study results.

In CDs, the researcher is interested in investigating the relationship between the 
written English proficiency of seventh grade students who are non-native English 
speakers enrolled in an online method for learning English, and variables such as 
students’ grade point average and score on a standardized test of English literacy. The 
researcher continues to sample students who have been using the online method until 
N = 660 are obtained, who are subsequently administered the test of written English. 
Several methodological challenges are linked to this design but the most important is 
not having treatment and control groups, which means the effectiveness of the online 
method cannot be directly studied.

Practical Advice

We offer five pieces of advice on research design to the novice researcher:

1. Producing unbiased estimates of effects should be the goal of quantitative
studies. The recommended standard is randomly assigning subjects to treatment
and control conditions because this should produce unbiased estimates of a
treatment effect and support strong causal inferences.

2. The use of an RCT does not guarantee unbiased estimates and strong causal
inferences unless factors that can undermine such inferences are controlled.
The WWC (2017) stated that researchers should be particularly concerned about
attrition (missing data). It is a good idea to report the percentage of missing data
in the treatment and control groups as well as for each variable. Differential
attrition refers to a difference in the attrition rates for the treatment and control
groups and can represent a severe threat to valid inferences. Every effort should
be made to minimize attrition. Remedies such as data imputation, which produce
complete data, require rigorous assumptions be met.

3. In many settings, random assignment is impossible and QEDs comparing existing
groups are used. Such designs are prone to selection bias in which groups a priori



Research Highlights in Education and Science 2019

113

differ on an outcome due to the presence of confounding variables that are not 
equally distributed across the groups and are correlated with an outcome. Every 
effort must be made to eliminate this bias, which typically takes the form of 
statistical control through the use of predictor variables in regression models or 
matching using propensity scores (Schneider et al., 2007).

4. RDDs represent a powerful tool that can produce unbiased (or nearly unbiased)
estimates and support strong causal inferences. A key to these designs is
employing a forcing variable (e.g., pretest) that through an appropriately chosen
cutoff score creates treatment and control groups. In general, a RDD should be
employed before a QED if at all possible.

5. Methodological standards provide no place for CDs because they cannot
support strong causal inferences. These designs should generally be limited to
preliminary research studies in which the goal is to provide empirical evidence
of relationships among key variables.

Instrumentation

The importance of using accurate instruments (tests, surveys, questionnaires) with 
exemplary psychometric properties in the educational sciences is well documented 
(American Educational Research Association [AERA], American Psychological Association 
[APA], & National Council on Measurement in Education [NCME], 2014; Biemer & Lyberg, 
2003; Danner et al., 2016; Fry, 1960; Kane, 2001, 2013; White, Carey, & Dailey, 2001). 
We employ the definition of instrumentation provided by Hsu and Sandford (2010):

“Instrumentation refers to the tools or means by which investigators attempt to measure 
variables or items of interest in the data-collection process. It is related not only to 
instrument design, selection, construction, and assessment, but also to the conditions 
under which the designated instruments are administered—the instrument is the device 
used by investigators for collecting data.” (p. 608).

Measurement instruments represent the foundation of empirical research in the 
educational sciences (Danner et al., 2016) yet selecting, modifying, or constructing 
instruments that support reliable and valid interpretations of scores is challenging, 
likely more so for novice researchers. The goal of this paper is to encourage novice 
researchers to employ available standards for instruments (e.g., AERA, APA, NCME, 
2014; Council for Exceptional Children [CEC], 2014; WWC, 2017). 

Psychometric Properties of Measurement Instruments

The two critical properties of measurement instruments are the reliability and validity 
of interpretations  and uses and consequently inferences made using instrument scores 
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(Haladyna, 2004; Haladyna & Rodriguez, 2013; Kane, 2013, 2016; Linn, 2006). The need 
for instruments with strong psychometric properties, and the difficulty of constructing 
such instruments, is well known (WWC, 2017). Unsurprisingly, educational research 
is plagued by poor instruments, in large part because of a belief that constructing 
psychometrically strong instruments is a modest task when the opposite is true.

Reliability and validity standards are typically applied to outcome variables in a study 
but are often relevant for other variables such as predictors in regression analyses. For 
example, in Harwell et al. (2009) student socio-economic status (SES), high school grade 
point average in mathematics classes, and year enrolled served as predictors. Applying 
instrumentation standards to these variables speaks to the reliability and validity of 
inferences based on these variables.

Reliability is not an absolute property of an instrument but rather refers to the amount 
of measurement precision (consistency) (Reynolds & Livingston, 2012) of scores. 
Reliability coefficients range between 0 to 1 or -1 to 1 depending on the coefficient, 
and instruments with more items should generally produce higher reliability because 
they provide more information. For example, suppose the reliability coefficient of a 
test intended to measure the construct proficiency with fractions equals .90. This value 
means that 90% of the variation in test scores is due to the construct and 10% reflects 
measurement error.

Another interpretation of reliability is the following: If a sample of subjects are given the 
same instrument twice and the rank-order of scores is quite similar across assessments, 
the reliability of inferences based on scores is high. In this case, the subject with the 
highest score at time 1 also likely obtained the highest score at time 2 (it is not necessary 
that subject 1 obtain the same score on both assessments), the subject with the second-
highest score at time 1 also is likely to have the second-highest score at time 2 (it is not 
necessary that subject 2 obtain the same score on both assessments), and so on. On 
the other hand, if a sample of subjects is given the same instrument twice and the rank-
order of scores is quite different across assessments reliability will be low, for example, 
the subject with the highest score at time 1 likely does not obtain the highest score at 
time 2, the subject with the second-highest score at time 1 likely does not obtain the 
second-highest score at time 2, and so on.

Several measures of reliability are available. If an instrument is administered twice a 
Pearson product-moment correlation typically serves as a reliability measure. If a single 
assessment is used, Cronbach’s alpha is popular and is available in most computer 
programs performing data analysis. However, Cronbach’s alpha has significant 
deficiencies (Dunn, Baguley, & Brunsden, 2014; Green & Hershberger, 2000; Raykov, 
2001; Tang & Cui, 2012; Yang & Green, 2011; Zhang & Yuan, 2016; Zimmerman, Zumbo, 
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& Lalonde, 1993; Zinbarg, Revelle, Yovel, & Li, 2005). Even Cronbach expressed concerns 
over the usefulness of alpha as it covers only a modest percentage of measurement 
uses for which reliability information is needed (Cronbach & Shavelson, 2004). A key 
assumption of coefficient alpha is that all items on an instrument measure the same 
construct (e.g., mathematics achievement) and possess the same factor analysis loadings 
which capture the relationship between each item and the construct (the essentially 
tau-equivalent model), which may not occur in practice  An arguably more realistic 
measure of reliability is the omega coefficient which also assumes items measure the 
same construct but allows factor loadings to vary (The congeneric model) (McDonald, 
1999). Omega is available in R (R Core Team, 2018) and the jMetrik software (Version 
2.1.0; Meyer, 2011) both of which can be downloaded without charge.

Reliability coefficients ≥  .80 are often acceptable (CEC, 2014) although a variety of
factors impact minimally acceptable values, such as the characteristic or trait being 
measured and the purpose of the instrument. For example, a reliability of .70 would 
likely be unacceptable for a test of mathematics achievement used in making college 
admission decisions but perfectly acceptable for a questionnaire being developed to 
assess attitudes towards public education. An infrequently used but promising approach 
to determine minimally acceptable reliability is to employ a decision criterion (Gugiu & 
Gugiu, 2018).

Validity is the accuracy with which inferences about a subject’s status are made based 
on their score. Like reliability, validity is not an absolute property of an instrument but 
refers to the proposed interpretations and uses of scores. Chan (2014) summarized this 
perspective: “Validity is about the inferences, claims, or decisions that we make based 
on instrument scores, not the instrument itself” (p. 10). The AERA, APA, and NCME 
(2014) instrumentation standards provided a similar definition:

“Validity refers to the degree to which evidence and theory support the interpretations 
of test scores for proposed uses of tests. Validity is, therefore, the most fundamental 
consideration in developing tests and evaluating tests. The process of validation involves 
accumulating relevant evidence to provide a sound scientific basis for the proposed 
score interpretations. It is the interpretations of test scores for proposed uses that are 
evaluated, not the test itself.” (p. 11)

Validity is best thought of as the single overall judgment of the adequacy and accuracy 
of an instrument’s interpretation or intended use. Several types of validity evidence 
are available but four are especially prominent and often overlap: face validity, 
content validity, criterion validity, and construct validity. The WWC (2017) standards 
emphasized the importance of face validity evidence, which reflects the extent to 
which an instrument appears to do what it claims. For example, a test of written English 
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proficiency that required U.S. students to interpret political cartoons from the United 
Kingdom in order to complete items would likely be viewed as lacking face validity. 

Content validity evidence refers to the extent to which an instrument reflects relevant 
facets of an underlying construct like proficiency with fractions. Evidence of content 
validity is often provided by a logical evaluation of the degree to which items cover 
relevant facets (often called an instrument’s blueprint), for example, the extent to 
which items reflect the steps needed to solve fraction problems. Both face validity and 
content validity evidence typically includes the judgments of experts who represent the 
domain of the intended uses of the instrument such as teachers, college admissions 
officers, or public policy staff.

Criterion validity evidence can be concurrent or predictive. Concurrent validity evidence 
assesses the relationship between an instrument and an existing measure which ideally 
has strong psychometric properties. Predictive validity evidence reflects how well 
scores predict a future outcome, for example, the extent to which scores of seventh 
grade students on a test of fractions predict their performance on an algebra test in 
eighth grade. Criterion validity evidence can be assessed by estimating the correlation 
coefficient between an instrument and current (concurrent) and later (predictive) 
performances.

Construct validity evidence reflects the extent to which inferences about a construct 
such as proficiency with fractions is accurate. Evidence of construct validity is typically 
both theoretical and empirical. The former reflects the expected structure of instrument 
items (e.g., all items reflect a single construct depicted in a theoretical model and 
test blueprint), and the latter takes the form of non-negligible correlations between 
instrument scores and variables these scores are expected to be related to (e.g., student 
scores on a test of fractions and teacher ratings of students’ mathematics proficiency). 
Construct validity evidence can also be generated using factor-analytic techniques. 
Deciding which type(s) of validity evidence to obtain and report is a critical decision 
and should be based on the intended interpretations and uses of instrument scores.

The relationship between reliability and validity is important but somewhat confusing 
because they are distinct yet related concepts. An instrument supporting reliable 
inferences may not support valid inferences. For example, a test of proficiency with 
fractions may produce consistent scores over repeated test administrations but not 
cover the domain it purports to or fail to predict future performance on an algebra test. 
However, a test with validity evidence must possess reliability because valid inferences 
about scores must be consistent.

In sum, measurement instruments with strong reliability and validity evidence 
strengthen inferences based on instrument scores, whereas those with weak 
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reliability and validity evidence can undermine inferences (Hsu & Sandford, 2010). The 
following sections illustrate the options available for selecting, modifying, or creating 
instruments, recommendations for instrument administration and data collection, 
common challenges using instruments and how to respond to them, and practical 
advice targeting novice researchers.

Options for Instruments Used in Data Collection

Researchers have three options for instruments: Select a published (existing) instrument 
in its current form, modify an existing instrument, or construct a new instrument 
(Creswell, 2012). This choice is often a critical methodological decision that can 
significantly enhance or undermine the quality of a study’s findings. We urge researchers 
to employ the above order in practice, i.e., select an existing instrument with evidence 
of strong psychometric properties if possible, modify an existing instrument with 
evidence of strong psychometric properties if necessary, and construct an instrument 
as a last resort.

Gay and Airasian (2000) outlined seven factors to consider in selecting an existing 
instrument: “(1) The name, publisher, and cost, (2) a brief description of the purpose of 
the instrument, (3) validity and reliability data, (4) the group for whom the instrument 
is intended, (5) administration requirements, (6) information regarding scoring 
and interpretation, and (7) reviewers’ overall impressions” (p. 145). We encourage 
novice researchers to begin their search for an existing instrument with the “Mental 
Measurement Yearbook” (MMY) published by The Buros Center for Testing at the 
University of Nebraska-Lincoln. These yearbooks appear every 3-5 years and contain 
reviews by professional educators of hundreds of instruments in the educational 
sciences (Carlson, Geisinger, & Jonson, 2017). The reviews contain information 
about the purpose, population, publication dates, administration time, score scale, 
price, technical issues, and psychometric properties of instruments. The instruments 
reviewed assess a wide range of content, for example, mathematics, reading, and 
science achievement, auditory perceptual skills, behavior assessment, foreign language 
proficiency, job related skills, intelligence and aptitude, personality traits, and teaching 
quality. Instruments with positive MMY reviews that meet the needs of a study deserve 
careful consideration whereas those with negative reviews should generally be avoided.

A second option is modifying an existing instrument. Modifications often take the 
form of simplifying the wording of directions and items, adding or deleting items, and 
extending or shortening the time to complete the instrument. Modifications should 
be made after obtaining the approval of the instrument author(s) and publisher which 
can be a lengthy and complex process. In addition, the psychometric properties of the 
original instrument do not necessarily apply to the modified instrument.
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A third option is constructing a new instrument. Guidance in developing and validating 
an instrument is available through the standards published jointly by AERA, APA, and 
NCME (2014). A careful review of the steps of constructing an instrument detailed 
in these standards shows that developing and validating a psychometrically strong 
instrument is a complex and time-consuming task that can take years. If a researcher 
designs their own instrument the rationale for doing so should be provided and should 
include evidence (a) of a paucity of existing instruments available for measuring the 
construct(s) of interest in a study, (b) that the new instrument represents a significant 
contribution to a field, (c) that the design and validation of the instrument is consistent 
with recommended standards.

Below is a summary of the steps for constructing a new measurement instrument laid 
out in the AERA, APA, and NCME (2014) standards:

• Determine the purpose and rationale for designing a new instrument and the
intended interpretations and uses of scores as well as the target population.

• Review related literature to provide deep insight into the construct(s) being
measured.

• Operationally define the construct(s) and their sub-dimensions (components) if
relevant (i.e., construct a test blueprint).

• Construct an item pool that covers relevant facets of a construct. An important
decision in this process is item format, for example, multiple choice, open-ended
items, or rating 	 scales.

• Ask content experts to review and revise the item pool as needed given the
instrument’s purpose, intended interpretations, and target population.

• Select items from the item pool to comprise the first draft of the instrument
based on their content coverage, readability, and fairness.

• Utilize the “thinking aloud” strategy among those constructing the instrument
and a small group of examine in which reactions to the instrument are shared to
further refine the first draft.

• Plan to administer the initial draft in a pilot study in a way that ensures data
collection bias will be minimized (date, time, sampling, scoring, data collector
characteristics).

• Score responses from the pilot study using theoretically-grounded rubrics to
score open-ended items if present.
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• Estimate the psychometric properties (reliability and validity).

• Refine the instrument based on the results of the pilot study.

• Repeat the above steps as needed. In many instances, an instrument is not ready
for use after a single piloting.

In sum, researchers ideally select an existing instrument that possesses evidence of 
strong psychometric properties or modify an existing instrument. Researchers who 
choose to construct an instrument should follow the AERA, APA, and NCME (2014) 
guidelines for doing so and should recognize that the process of developing and piloting 
an instrument until it shows strong reliability and validity is likely to take considerable 
time, effort, and resources.

Recommendations for Instrument Administration and Data Collection

Once an instrument is available for data collection in a study, it is important to minimize 
factors that can undermine data quality. McMillan and Gogia (2014) pointed out the value 
of researchers carefully selecting the conditions, time, and place for administration to 
help ensure data quality. Factors like respondent fatigue and mood, environment noise, 
or test monitors who provide confusing instructions for completing the instrument can 
produce inaccurate responses, missing data, and random measurement errors which 
lower reliability. Additional problems that can undermine data quality may emerge 
if the instrument appears on a computer or tablet, such as internet connection or 
firewall issues, equipment shortcomings (e.g., unresponsive mouse), or difficulties in 
the computer program used to deliver the instrument and record responses (e.g., the 
computer program “freezes”). If an instrument requires raters or observers to assess 
respondents’ performance, it is important that raters be trained such that variability 
among their ratings is minimized to enhance reliability and validity of inferences 
(Harwell, 1999).

Examples of Common Challenges in Instrumentation

Various challenges may arise in instrumentation. Perhaps one of the more common 
challenges is whether an instrument positively reviewed in the MMY should be used 
in a study with a somewhat different purpose or target population than that of the 
positively-reviewed instrument. For example, a researcher may use the MMY to 
identify an existing test that assesses the ability of sixth grade students to solve fraction 
problems, but discovers that only a test of fractions for fourth and fifth grade students 
(FRACT) is positively reviewed. Should the researcher administer FRACT to sixth grade 
students, modify FRACT to make it appropriate for sixth grade students, or develop a 
new test of fractions that targets sixth grade students? Other instrumentation challenges 
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include employing a sample consistent with the target population and the availability of 
individuals with psychometric expertise to analyze item response data and interpret the 
results. Below we expand on these challenges in the context of selecting, modifying, or 
developing a new instrument. FRACT is the example used to illustrate such challenges.

Suppose a researcher turned to the MMY for a published test measuring the proficiency 
of sixth grade students’ proficiency with fractions. The MMY produced a positively-
reviewed test (FRACT) designed for fourth and fifth grade students but none for sixth 
grade students. FRACT was published in 2010 after a lengthy development process that 
followed AERA, APA, and NCME (2014) recommendations, consist of multiple choice 
and open-ended items, and has evidence of strong reliability and construct validity. If 
the researcher administers FRACT to sixth grade students, the reliability and validity of 
test-based inferences may be incorrect, but if the researcher decides to not use FRACT 
in its published form either FRACT needs to be modified to accommodate sixth grade 
students or a new instrument needs to be developed.

Continuing with the above example, suppose the researcher decides to modify FRACT 
to ensure it is appropriate for sixth grade students. The modifications include revising 
the wording in test directions and test items, increasing the difficulty of items, and 
reducing the time allotted to complete the test. The researcher contacts the FRACT 
author(s) and test publisher for permission to modify the existing instrument. After 
months of negotiations over the modifications, the author(s) and publisher agree to 
the modifications, but are concerned that the strong psychometric properties of the 
original test may not transfer to the modified version. To respond to this concern, the 
researcher plans to follow the recommended steps of the AERA, APA, and NCME (2014) 
test standards, and to provide evidence the properties of the modified and original 
instruments are similar by piloting the modified instrument and reporting reliability and 
validity evidence.

Suppose instead the researcher plans to construct a new instrument (FRACT2) that 
targets the proficiency with fractions of sixth grade students. The researcher begins by 
examining the recommendations in the AERA, APA, and NCME (2014) standards. If the 
researcher does this on their own it is likely to take several months, a year, or longer; if a 
team of researchers are involved the process presumably takes less time. The steps are:

• Clarify the purpose of the test and the target population (e.g., measuring the
proficiency with fractions of sixth grade students).

• Review literature related to assessing the proficiency with fractions of sixth
grade students to identify the desired skills that should be covered in the test
(test blueprint) such as the ability to recognize common underlying problem
structures, represent problems using visual-schematic diagrams, plan how to
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solve problems, and solve and check the reasonableness of answers.

• Construct test items that will elicit the desired skills. The researcher decides
that 20 multiple choice items and 10 open-ended tasks will appear on the test.
Typically more items are developed than appear on the final version of the
instrument because piloting the instrument will likely reveal items that perform
poorly and should be discarded. As a result 30 multiple choice items and 15
open-ended items are developed. It is important to construct items that avoid
culturally dependent or insensitive language (e.g., a fraction problem involving
the number of rooms in a student’s household when some students may be
homeless or what constitutes a room in a household may vary by culture).

• Identify content experts (e.g., teachers, faculty researchers) who review and
revise the items in terms of readability and suitability for sixth grade students.
This feedback prompts revision of the items and the development of a scoring
rubric for open-ended items.

• Utilize a “thinking aloud” strategy in which a group of 15 sixth grade students
read the test directions and items and provide feedback on their readability and
what they believe is an appropriate response. This feedback is used to further
revise the test.

• Pilot an initial version of the test using a sample of N = 300 sixth grade students.
This sample size should be large enough to ensure pilot data can be confidently
used to estimate the psychometric properties of the test along with information
about the adequacy of the testing protocol (e.g., directions given to students,
time allotted for completing the test).

• Score student responses from the pilot study and compute reliability using the
omega coefficient which allows items to have different loadings on the factor
“proficiency with fractions” and supports different item formats (binary scoring,
open-ended scoring) in the same instrument. Correlate test scores with collateral
information such as scores from a standardized test of mathematics to provides
evidence of criterion validity.

• Develop a transparent set of guidelines for keeping or omitting items based on
the results of the pilot study. For example, the pilot data may suggest 12 multiple-
choice items and five open-ended items should be discarded. At this point, one of
two things happens: (a) The researcher decides the instrument has satisfactory
psychometric properties (e.g., omega coefficient of the remaining 18 + 10 = 28
items is .86, correlation of standardized mathematics scores and FRACT2 scores
is .45) and should be used to collect data in the main study, or (b) The researcher
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decides the instrument has unsatisfactory psychometric properties (e.g., omega 
coefficient of the 28 remaining items is .62 and additional items need to be 
written, correlation of standardized mathematics scores and FRACT2 scores is 
.12). In this case, the test must go through another round of development and 
piloting.

Practical Advice 

We offer three pieces of advice on instrumentation challenges to novice researchers:

1. The impact of instruments on study-based inferences as a function of their
reliability and validity  evidence speaks to the need to employ instruments with
strong psychometric properties. Put bluntly, it is difficult to over-emphasize
the damage a poor instrument can do to inferences from otherwise well-
designed studies. The use of existing instruments with compelling evidence of
strong psychometric properties is always preferred assuming the instrument
is consistent with a study’s purpose, intended interpretations, and target
population. On the other hand, a well-reviewed existing instrument that does
not meet these conditions should not be used.

2. Modifying an existing instrument is typically preferable to constructing one but
the possibility the modified test performs differently from the original in ways
that affect its psychometric properties should be acknowledged and studied.
This will likely involve following several steps of the AERA, APA, and NCME (2014)
standards such as piloting the modified instrument.

3. Researchers should not construct an instrument for a study unless it is absolutely
necessary to do so, and in this case the AERA, APA, and NCME (2014) standards
for test construction should be followed to help ensure the instrument possesses
strong psychometric properties. This is often a time consuming process that even
under ideal circumstances will require significant resources and take several
months to more than one year.

The Extent to Which a Sample of U.S. and Non-U.S. Quantitative Education Studies 
Capitalize on Recommended methodological Standards

The paper’s premise that researchers often do not capitalize on recommended 
sampling, research design, instrumentation and standards was assessed using a sample 
of U.S. and non-U.S. published studies in education. For the U.S. studies, we sampled 
studies appearing in the American Educational Research Journal  (AERJ), the flagship 
journal of AERA, in 2016 (Vol. 53) and 2017 (Vol. 54). For non-U.S. studies we surveyed 
the  International Journal of Educational Research (IJER) published by the European 
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Association for Research on Learning and Instruction in 2016 (Vol. 75 - Vol. 80) and 2017 
(Vol. 81 - Vo. 86). IJER is an international outlet for educational research conducted in 
Africa, Asia, Australia, and Europe.

For sampling, a study was coded 4 if all participants were selected at random, 3 if 
some participants were selected at random (e.g., random sampling of schools but not 
students within schools), 2 if the study employed a non-probability-based sampling 
such as a convenience sample, and 1 if the sampling mechanism was not clearly stated. 
A similar strategy was followed to assess the research design utilized in a study: a coded 
value of 4 means all subjects were randomly assigned to groups (e.g., treatment and 
control), 3 was assigned if the study employed a quasi-experimental design (non-random 
assignment of subjects to groups), 2 if the study employed a correlational research 
design (one group of subjects), and 1 if the research design was not clearly stated. 
Concerning instrumentation, a study was coded 4 if an instrument was international, 
national, or regional in its origin and purpose because these instruments typically 
report following test construction standards and demonstrate stronger psychometric 
evidence. For example, a study using an instrument constructed for an international 
assessment such as PISA or TIMSS, a national test such as the American College Testing 
(ACT) assessment, or a state-mandated test was coded 4. A value of 3 was assigned if 
study-based evidence of strong psychometric properties of an existing instrument or a 
new instrument developed for a study was reported, 2 if study-based evidence of the 
psychometric properties of an existing instrument or a new instrument developed for 
a study were weak, and 1 if psychometric evidence for an instrument was not clearly 
reported.

A total of 111 studies were reviewed (52 from the AERJ, 59 from IJER). One of the 
authors did the coding but both authors discussed coding issues in particular studies 
(e.g., should a study be coded 1 or 2 for research design given the limited information 
provided) until a consensus was reached. The results in Table 1 indicate that the 
methodological standards of sampling and research design received minimal attention 
whereas instrumentation received moderate attention. For studies appearing in AERJ, 
overall 30.8% utilized national or international datasets that employed random sampling 
and 3.8% employed randomization at the cluster level but non-random sampling at level 
1. Non-random sampling was used in 65.4% of the studies reviewed in AERJ, suggesting
that generalizing results for these studies is challenging. For research design in the AERJ 
studies, 7.7% employed RCTs, 25% employed QEDs, and 67.3% employed CDs. Overall 
55.8% of AERJ studies used international, national, or state-mandated instruments, 
approximately one-third of these studies (32.7%) used existing instruments or created 
instruments showing strong psychometric properties, and 11.5% used newly created 
instruments but did not report evidence of their psychometric properties. 
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On the whole, studies appearing in IJER showed less evidence of capitalizing on 
recommended methodological standards. Overall 10.7% of the studies utilized random 
sampling (most as a result of using PISA or TIMSS data) and 79.7% used non-random 
sampling. For research design 11.9% employed RCTs, 25.4% employed QEDs, and 62.7% 
employed CDs. Overall 30.5% of these studies used international or national instruments 
with evidence of strong psychometric properties, 37.3% used existing instruments 
or created an instrument for which evidence of strong psychometric properties was 
reported. Approximately one-third of the studies (32.2%) used existing instruments or 
created new instruments for which the reported psychometric evidence was weak or 
not reported at all.

Table 1. Frequency of Articles Employing the Three Methodological Components by Journal and Year (N= 111)

M
et

ho
do

-lo
gi

ca
l 

Co
m

po
ne

nt
s

Journal American Educational Research Journal International Journal of Educational Research

Year
2016   

N= 32

2017  

  N= 20

Total

N= 52

2016  

  N= 27

2017  

   N= 32

Total

N= 59

Code label 
(Value) N % N % N % N % N % N %

Sa
m

pl
in

g

Fully random (4) 13 40.63 3 15 16 30.77 2 7.41 4 12.5 6 10.17

Partially random 
(3) 2 6.25 --- --- 2 3.85 3 11.11 3 9.38 6 10.17

Non-random (2) 17 53.12 17 85 34 65.38 22 81.48 25 78.12 47 79.66

Not stated/
unclear (1) --- --- --- --- --- --- --- --- --- --- --- ---

Re
se

ar
ch

 D
es

ig
n

Randomized (4) 2 6.25 2 10 4 7.69 2 7.41 5 15.63 7 11.86

Quasi-
experimental (3) 5 15.63 8 40 13 25 9 33.33 6 18.75 15 25.42

Correlational (2) 25 78.12 10 50 35 67.31 16 59.26 21 65.62 37 62.72

Unstated/
unclear (1) --- --- --- --- --- --- --- --- --- --- --- ---

In
st

ru
m

en
ta

tio
n

Nat., Int., or SM: 
SPER (4) 21 65.62 8 40 29 55.77 6 22.22 12 37.5 18 30.51

Existed or 
created: SPER (3) 5 15.63 12 60 17 32.69 12 44.45 10 31.25 22 37.29

Existed or 
created: WPER 
(2)

6 18.75 --- --- 6 11.54 9 33.33 10 31.25 19 32.20

Existed or 
created: 
Psychometric 
evidence was 
not clearly 
reported (1)

--- --- --- --- --- --- --- --- --- --- --- ---

Note. Int.= International, Nat.= National, SM= State-mandated, SPER= Strong psychometric evidence 

reported
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Conclusion

Strengthening inferences of quantitative education studies is a critical goal. The current 
paper speaks to this goal by providing novice researchers with descriptions of three 
facets of quantitative methodology (sampling, research design, instrumentation) that 
may not receive the attention they deserve, along with examples and practical advice 
that should promote stronger inferences. A review of a sample of U.S. and non U.S. 
studies provided evidence methodological standards for sampling and research design 
are under-capitalized. Accordingly, this work should be of value to novice researchers 
planning to conduct quantitative studies. Audiences for this paper include new faculty, 
individuals beginning non-faculty roles such as a working in a university-affiliated 
research center or a government-funded education center, faculty transitioning to more 
research-oriented work, and graduate students conducting their own research. This 
paper could also be used for instructional purposes in research methodology classes.

References

American Educational Research Association, American Psychological Association, & 
National Council on Measurement in Education (2014). Standards for 
educational and psychological testing. Washington, DC: American Educational 
Research Association. 

APA Publications and Communications Board Working Group on Journal Article 
Reporting Standards. (2008). Reporting standards for research in psychology: 
Why do we need them? What might they be? American Psychologist, 63(9), 839- 
851. https://doi.org/10.1037/0003-066X.63.9.83

Appelbaum, M., Cooper, H., Kline, R. B., Mayo-Wilson, E., Nezu, A. M., & Rao, S. M. 
(2018). Journal article reporting standards for quantitative research in psychology: 
The APA Publications and Communications Board Task Force report. American 
Psychologist, 73, 3–25. http://dx.doi.org/10.1037/amp0000191

Battalgia, M. P. (2008). Nonprobability sampling. In P. J. Lavrakas (Ed.), Encyclopedia of 
Survey Research Methods (PP. 1-7). Thousand Oaks, CA:  Sage Publications, Inc. 

Biemer, P. P., & Lyberg, L. E. (2003). Introduction to survey quality. Hoboken, NJ: John 
Wiley  & Sons.

Bloom, H. (2010). Modern regression discontinuity analysis. New York, NY: MDRC.

Campbell, D. T., & Stanley, J. C. (1963). Experimental and quasi-experimental designs for 
research. Chicago, IL: Rand McNally & Company.

Carlson, J. F., Geisinger, K. F., & Jonson, J. L. (Eds.) (2017). The twentieth mental 
measurement yearbook. Lincoln, NE: The University of Nebraska Press.



Research Highlights in Education and Science 2019

126

Chan, E. K. H. (2014). Standards and guidelines for validation practices: Development 
and validation of measurement instruments. In B. D. Zumbo, & E. K. H. Chan 
(Eds.), Validity and Validation in Social, Behavioral, and Health Sciences (pp. 9-24). 
Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-
319-07794-9_2

Council for Exceptional Children (2014). Standards for evidence-based practices in 
special education. Arlington, VA: Council for Exceptional Children.

Creswell, J. W. (2012). Educational research: Planning, conducting, and evaluating 
quantitative and qualitative research (4th ed.). Boston, MA: Pearson.

Cronbach, L. J., & Shavelson, R. J. (2004). My current thoughts on coefficient alpha and 
successor procedures. Educational and Psychological Measurement, 64(3), 391–
418. https://doi: 10.1177/ 0013164404266386

Danner, D., Blasius, J., Breyer, B., Eifler, S., Menold, N., Paulhus, D. L., . . . Ziegler, M. 
(2016). Current challenges, new developments, and future directions in scale 
construction. European Journal of Psychological Assessment, 32(3): 175–180. 
http://dx.doi.org/10.1027/1015-5759/a000375

Dedrick, R. F., Ferron, J. M., Hess, M. R. Hogarty, K. Y., Kromrey, J. D., Lang, T. R.,  Niles, 
J. D., & Lee, R. S. (2009). Multilevel modeling: A review of methodological issues 
and applications. Review of Educational Research, 79(1), 69-102. https://doi.
org/10.3102/0034654308325581

Dunn, T. J., Baguley, T. & Brunsden, V. (2014). From alpha to omega: A practical solution 
to the pervasive problem of internal consistency estimation. British Journal of 
Psychology, 105(3), 399-412. https://doi: 10.1111/bjop.12046

Ellis, T. J., & Levy, Y. (2009). Towards a guide for novice researchers on research 
methodology: Review and proposed methods. Issues in Informing Science and 
Information Technology, 6, 323-337. 

Ellis, T. J., & Levy, Y. (2010). A guide for novice researchers: Design and development 
research methods. Proceedings of Informing Science & IT Education Conference.

Fath, K. Q. (2014). Reporting methods and analyses in higher education research: 
Hierarchical linear and OLS regression models. Unpublished dissertation, Loyola 
University, Chicago, IL.

Fry, E. B. (1960). Research tools: Instrumentation in educational research. Review of 
Educational Research, 30(5), 513-521.  



Research Highlights in Education and Science 2019

127

Gay, L. R., & Airasian, P. (2000). Educational research: Competencies for analysis and 
application (6th ed.). Upper Saddle River, NJ: Printice-Hall, Inc.

Green, S. B., & Hershberger, S. L. (2000). Correlated errors in true score models and 
their effect on coefficient alpha. Structural Equation Modeling: A Multidisciplinary 
Journal, 7(2), 251-270. https://doi: 10.1207/ S15328007SEM0702_6

Gugiu, C., & Gugiu, M. (2018). Determining the minimum reliability standard based on a 
decision criterion. The Journal of Experimental Education, 86(3), 458-472. https://
doi.org/10.1080/00220973.2017.1315712

Haladyna. T. M. (2004). Developing and validating multiple-choice test items (3rd ed.). 
Mahwah, NJ: Lawrence Erlbaum Associates, Inc. 

Haladyna, T. M., & Rodriguez, M. C. (2013). Developing and validating test items. New 
York, NY: Routledge.

Harwell, M. R. (1999). Evaluating the validity of educational rating data. 
Educational and Psychological  Measurement, 59 (1), 25-27. https://doi 
org/10.1177/0013164499591002

Harwell, M. R. (2011). Research design: Qualitative, quantitative, and mixed methods. 
In C. F. Conrad, & R. C. Serlin (Eds.), The Sage handbook for research in education: 
Pursuing ideas as the keystone of exemplary inquiry (2nd ed.) (pp. 147-164). 
Thousand Oaks, CA: Sage Publication Inc. 

Harwell, M. R., Post, R. T., Cutler, A., Maeda, Y., Anderson, E., Norman, K. W., & Medhanie, 
A. (2009). The preparation of students from national science foundation–funded 
and commercially developed high school mathematics curricula for their first 
university mathematics course. American Educational Research Journal, 46(1), 203-
231. https://doi.org/10.3102/0002831208323368

Hsu, C., & Sandford, B. A. (2010). Instrumentation. In N. J. Salkind (Ed.), Encyclopedia of 
Research Design (pp. 608-610). Thousand Oaks, CA: Sage Publication Inc. 

IBM Corp. (2011). IBM SPSS Statistics for Windows (Version 20.0) [Computer software]. 
Armonk, NY: IBM Corp.

Jitendra, A. K., Harwell, M. R., Lm, S., Karl, S. R., & Slater, S. C. (2018). Using regression 
discontinuity to estimate the effects of a tier 1 research-based mathematics 
program in seventh-grade. Exceptional Children, 85(1), 46-65. https://doi.
org/10.1177/0014402918784541

Kane, M. T. (2001). Current concerns in validity theory. Journal of Educational 



Research Highlights in Education and Science 2019

128

Measurement,  38(4)¸ 319-342. https:// dx.doi.org/10.1111/j.1745-3984.2001.
tb01130.x

Kane, M. T. (2013). Validating the interpretations and uses of test scores. Journal of 
Educational Measurement, 50(1), 1-73. http://dx.doi.org/10.1111/jedm.12000

Kane, M. T. (2016). Explicating validity. Assessment in Education: Principles, Policy & 
Practice, 23(2), 198-211. https://doi.org/10.1080/0969594X.2015.1060192

Kleinman, K. (2017). Cluster-randomized trials. In C. Gatsonis, & S. C. Morto (Eds.), 
Methods in comparative effectiveness research (pp. 131–155). Boca Raton, FL: 
Taylor & Francis Group, LLC.

Linn, R. L. (2006). The standards for educational and psychological testing: Guidance in 
test development. In S. M. Downing, & T. M. Haladyna (Eds.), Handbook of test 
development (pp.27-38). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

Lohr, S. L. (2010). Sampling: Design and analysis (2nd ed.). Boston, MA: Cengage Learning.

McDonald, R. P. (1999). Test theory: A unified approach. Mahwah, NJ: Lawrence Erlbaum 
Associates.

McMillan, J. H., & Gogia, L. (2014). Data collection in educational research. Oxford 
Bibliographies in Education. doi: 10.1093/obo/9780199756810-0087

Meyer, J. P. (2011). jMetrik: Open source psychometric software [computer program]. 
Retrieved from www.ItemAnalysis.com

Pedhazur, E. J., & Schmelkin, L.P. (1991). Measurement, design, and analysis: An 
integrated approach. Hillsdale, NJ: Lawrence Erlbaum.

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and 
data analysis methods (2nd ed.). Thousand Oaks, CA: Sage Publications, Inc.

Raykov, T. (2001). Bias of coefficient alpha for congeneric measures with correlated 
errors. Applied Psychological Measurement, 25(1), 69-76. http://dx.doi: 
10.1177/01466216010251005

R Core Team (2018). R: A Language and Environment for Statistical Computing. Vienna: 
R Foundation for Statistical Computing.  https://www.R-project.org

Reynolds, C. R., & Livingston, R. B. (2012). Mastering modern psychological testing: 
Theory & methods. Boston, MA: Pearson.

Robinson, J. P. (2010). The effects of test translation on young English learners’ 



Research Highlights in Education and Science 2019

129

mathematics performance. Educational Researcher, 39(8), 582–590. https://doi.
org/10.3102/0013189X10389811

Schneider, B., Carnoy, M., Kilpatrick, J., Schmidt, W. H., & Shavelson, R. J.   (2007).  
Estimating causal effects using experimental and observational designs.  
Washington, DC: American Educational Research Association.

Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-
experimental designs for generalized causal inferences. New York, NY: Houghton 
Mifflin Company.

Smith, L. M., Levesque, L. E., Kaufman, J. S., & Strumpf, E. C. (2017). Strategies for 
evaluating the assumptions of the regression discontinuity design: A case study 
using a human papillomavirus vaccination programme. International Journal of 
Epidemiology, 46(3), 939–949. https://doi.org/10.1093/ije/dyw195

Stata Corp. (2015). Stata Statistical Software: Release 14 [Computer software]. College 
Station, TX: StataCorp LP.

Steiner, P., Cook, T. D, Shadish, W. R., & Clark, M. H. (2010). The importance of covariate 
selection in controlling for selection bias in observational studies. Psychological 
Methods, 15, 250–267. doi:10.1037/a0018719

Tang, W., & Cui, Y. (2012, April). A simulation study for comparing three lower bounds 
to reliability. Paper presented at the annual meeting of the American Educational 
Research Association, Vancouver, Canada.

Trochim, W. M. K., & Land, D. A. (1982). Designing designs for research. The Researcher, 
1, 1–6.

U.S. Department of Education (2013). Common guidelines for education research and 
development. A Report from the Institute of Education Sciences. Department of 
Education’s Institute of Education Sciences, Washington, D.C.

White, J. A., Carey, L. M., & Dailey, K. A. (2001). Web-based instrumentation in 
educational survey research. WebNet Journal, 46-50.

Wilkinson, L., & APA Task Force on Statistical Inference. (1999). Statistical methods in 
psychology journals: Guidelines and explanations. American Psychologist, 54(8), 
594-604. https://doi.org/10.1037/0003-066X.54.8.594

WWC standards (2017). What works clearinghouse procedures and standards handbook 
(Version 4). U.S. Department of Education’s Institute of Education Sciences.



Research Highlights in Education and Science 2019

130

Yang, Y., & Green, S. B. (2011). Coefficient alpha: A reliability coefficient for the 21st 
century? Journal of Psychoeducational Assessment, 29, 377–392. http://
dx.doi: 10.1177/ 0734282911406668

Zhang, Z., & Yuan, K. (2016). Robust coefficients alpha and omega and confidence 
intervals with outlying observations and missing data: Methods and software. 
Educational and Psychological Measurement, 76(3), 387–411. http://dx.doi: 
10.1177/0013164415594658

Zimmerman, D. W., Zumbo, B. D., & Lalonde, C. (1993). Coefficient alpha as an estimate of 
test reliability under violation of two assumptions. Educational and Psychological 
Measurement, 53(1), 33-49. http://dx.doi: 10.1177/0013164493053001003

Zinbarg, R. E., Revelle, W., Yovel, I., & Li, W. (2005). Cronbach’s α, Revelle’s β, 
and McDonald’s ωH: There relations with each other and two alternative 
conceptualizations of reliability. Psychometrika, 70(1), 123-133. http://dx. doi: 
10.1007/s11336-

Copyright © 2019 by ISRES Publishing




